LM3481 Evaluation Board

National Semiconductor Application Note 1756 Maurice Eaglin April 30, 2008

Introduction

The LM3481 is a current mode, low side N channel FET controller. It can be utilized in numerous configurations including a Boost, Flyback or SEPIC (Single Ended Primary Inductor Converter). This evaluation board demonstrates the flexibility of the LM3481 in a boost topology. The operating conditions for the evaluation board are listed below: $3V \le V_{IN} \le 11V$ $V_{OUT} = 12V$ $0A \le I_{OUT} \le 1.5A$ The circuit and bill of materials for this design are given below:

R7 121 kΩ $V_{|\mathbf{N}|}$.11 w 0 СЗ C1. C2 R8 0.47 µF 100 µF 121 kΩ **3** ^L1 7.8 μΗ L1 C8 VIN ISEN 1μF 390 pF Vc Vout UVLO +-0 с C9 D1 C4, C5 COMP LM3481 Q1 DR 15 100 µF C6 R3 1.37 kΩ 0.12 µF FΒ PGND R4 R2 000 AGND FA/SYNC/SD 20 kΩ C7 R5 R6 2.2 nF 20 mΩ 61.9 kΩ R1 169 kΩ 30045101

FIGURE 1. Circuit Diagram

Bill of Materials 300 kHz, Vin = 5V, Vo = 12V, I_0 = 1.5A

Designat	Function	Description	Part Number	Vendor
or				
U1	Controller	LM3481MSOP-10	LM3481MM	National
C1	Input Filter Cap	100 µF, 20V, D case, OxiCap	TPSV107M020R0060	AVX
C2	Input Filter Cap	100 µF, 20V, D case, OxiCap	TPSV107M020R0060	AVX
C3	Decoupling Cap	.47 μF, 16V, X7R, 1206	ECJ-3VB1C474K	Panasonic
C4	Output Filter Cap	100 µF, 16V, Y case, Ta	TPSD107M016R0100	AVX
C5	Output Filter Cap	100 µF, 16V, Y case, Ta	TPSD107M016R0100	AVX
C6	Comp Cap	0.12 µF, 25V, 0805	ECJ-2YB1E124K	Panasonic
C7	Current Limit Sense Cap	2200 pF, 50V, 0805	ECJ-2VB1H222K	Panasonic
C8	Comp Cap	390 pF, 50V, 0805	08055C391KAT2A	AVX
C9	V _{CC} Cap	1 μF, 25V, 1206	12063C105KAT	AVX
C11	Analog Input By. Cap	1 μF, 10V, 0805	0805ZC105KAT	AVX
R1	Resistor Divider (Upper)	169 kΩ, 1%, 0805	CRCW0805169KFK	Vishay
R2	Resistor Divider (Lower)	20k, 1%, 0805	CRCW080520K0FK	Vishay
R3	Comp Resistor	1.37k, 1%, 0805	CRCW08051K37FK	Vishay
R4	Filter Resistor	100Ω, 1 <mark>%, 0805</mark>	CRCW0805100RFK	Vishay
R5	Sense Resistor	20 mΩ, 1%	WSL2512R0200FE	Vishay

AN-1756

AN-1756

Designat	Function	Description	Part Number	Vendor
or				
R6	Freq. Adj. Resistor	61.9 kΩ, 1%, 0805	CRCW08056192F	Vishay
R7	UVLO Res. Div.	121 kΩ, 1%, 0805	CRCW08051213F	Vishay
R8	UVLO Res. Div.	121 kΩ, 1%, 0805	CRCW08051213F	Vishay
L1	Input Filter	7.8μ , 8A, DCR = 10 m Ω	RLF12560-7R8N8R2	TDK
D1	Schottky Diode	$4A,30V, V_{f} = 0.4V$	SL-43	Vishay
Q1	FET	SO-8, Rdson = 2.9 m Ω @V _{DS} = 30V	SI4368DY	Vishay
J1	Jumper	Shunt LM with handle, 2 positions	881545-2	Тусо
				Electronics
VIN	VIN Post Turret	90mil mounting diameter	97H6305	Newark
				Catalog
GND	VIN GND Post Turret	90mil mounting diameter	97H6305	Newark
				Catalog
GND	VOUT Post Turret	90mil mounting diameter	97H6305	Newark
				Catalog
VOUT	VOUT GND Post Turret	90mil mounting diameter	97H6305	Newark
				Catalog

Performance

Benchmark data has been taken from the evaluation board using the LM3481. *Figure 2* shows an efficiency measurement taken at the maximum load of 1.5A with Vin at 5V.

FIGURE 2. Efficiency vs Load

The advantage of the evaluation board is the ability to examine performance tradeoffs through substitution of parts. By careful selection of the components used, it is possible to optimize the application circuit for a given parameter. For instance, the FET footprint has been designed to accommodate either one SO-8 or two parallel SO-8 packages. The selection of the FET would then be determined by the design constraints. An example would be that a lower system cost could be obtained by selection of a FET with a higher $R_{DS(ON)}$, although performance would be sacrificed through reduced efficiency.

Current Limit

The purpose of the R4 (R_{SL}) resistor is to provide flexibility in the selection of the slope compensation needed for the required application. The amount of slope compensation directly determines the minimum inductance required for stability. (Please see the LM3481 datasheet for adjustment of slope compensation). For a complete discussion on how to calculate the R4 value needed, refer to the current limit section in the LM3481 datasheet. This evaluation board uses R4 and C7 to filter the Isen signal with negligible affect on the slope compensation.

Layout Fundamentals

Good layout for DC-DC converters can be implemented by following a few simple design guidelines:

- 1. Place the power components (catch diode, inductor, and filter capacitors) close together. Make the traces between them as short and wide as possible.
- 2. Use wide traces between the power components and for power connections to the DC-DC converter circuit.
- Connect the ground pins of the input and output filter capacitors and catch diode as close as possible using generous component-side copper fill as a pseudoground plane. Then, connect this to the ground plane through several vias.
- 4. Arrange the power components so that the switching loops curl in the same direction.
- 5. Separate noise sensitive traces, such as the voltage feedback path, from noisy traces associated with the power components.
- 6. Ensure a good low-impedance ground for the converter IC.
- Place the supporting components for the converter IC, such as compensation and frequency selection components as close to the converter IC as possible, but away from noisy traces and the power components. Make their connections to the converter IC and its pseudo-ground plane as short as possible.
- 8. Place noise sensitive circuitry such as radio or modem blocks away from the DC-DC converter.

FIGURE 3. Top Layer

30045104

FIGURE 4. Bottom Layer

Notes

Pr	oducts	Design Support					
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench				
Audio	www.national.com/audio	Analog University	www.national.com/AU				
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes				
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts				
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green				
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging				
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality				
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns				
Power Management	www.national.com/power	Feedback	www.national.com/feedback				
Switching Regulators	www.national.com/switchers						
LDOs	www.national.com/ldo						
LED Lighting	www.national.com/led						
PowerWise	www.national.com/powerwise						
Serial Digital Interface (SDI)	www.national.com/sdi						
Temperature Sensors	www.national.com/tempsensors						
Wireless (PLL/VCO)	www.national.com/wireless						

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

C

AN-1756

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com