DECEMBER 1976 Jonathan Stinehelfer National Semiconductor Corp.

PROM Power-Down Circuits

description

Inexpensive bipolar PROMs can be used in high perfor mance, low power applications if powered down when they are not being accessed. Since the access time of the circuit of Figure 1 is less than 80 nanoseconds, the power saving can be greater than 10 to 1 if cycled every microsecond. Longer cycle times, or decoding of the power switching to multiple packages, can yield even more impressive ratios.

Bipolar PROMs with on-chip power-down have power-up to power-down ratios of $3: 1$. Using the PROM powerdown technique illustrated in Figure 1, ratios considerably higher than 3:1 can be obtained. National's PROMs perform well in this application. With power removed, the Tri-State ${ }^{\circledR 3}$ parts revert quickly to the third lopen high Z) state. Because there are no clamp diodes from the outputs to V_{CC}, the powered down device presents only leakage to the output bus.

PROMs do not need to be continuously powered in many applications. Often data is required from a PROM on system power up or for a small percentage of a
system cycle. Turning the PROM off when it is not needed saves power and the access time is increased by only the delay of the power down circuit.
The basic power down circuit is illustrated in Figure 2. A TTL level input signal drives the TTL logic input of the power down circuit. The logic input is drawn as a noninverting buffer; however, circuit operation is not limited to noninverting buffers. Logic Table 1 illustrates several logic implementations of both inverting and noninverting inputs with different speed-power tradeoffs.

Circuit operation is as follows. When the logic input to R_{2} goes low, base drive is supplied to the PNP switch, turning the switch on. C_{1} is a speed-up capacitor which decreases the switching time of the PNP switch. In applications where high speed is not important C_{1} is not necessary. When the PNP saturating switch is on $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ is applied to the PROM. The time delay from power up command to power up on the PROM ranges from about 10 ns to 100 ns , depending upon the PNP switch and the TTL logic driving the switch.
logic table

	- Fast - Active High Selects 74S00 Speed 74LS00 Speed and Low Power
	- Fast - Active Low Selects 74S04 Speed Only 74LS04 Speed and Low Power
	- Very Low Power - Active Low Selects Buffers can be connected in parallel for additional current
	- Very Low Power - Memory Expansion - No Resistors Required R_{1} and R_{2}. Figure 2, not required

design example

Design a minimum power memory that has a 200 ns access time, a 1000 ns cycle time, and a 256×8 memary.
Two DM74S287 PROMs will be used for the 256×8 memory. DM74S287s have a $\pm 5 \%$ power supply tolerance. Since there will be about a 0.2 V drop across the PNP switch we need to ensure that the $V_{C C}$ requirement of the PROM is met.
Since speed is not of prime importance in this application we will select "slow" low power parts in the power down circuit. The 74C902 noninverting buffer will be used as the logic input device. This device is selected for its low power. 2 N3467 PNP switch will be used as the pass transistor

From the data sheets:

2N3467 PNP Saturating Switch

$\mathrm{V}_{\text {CE }}$ (SAT)	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$ typ $=0.165$	$\max =0.3$
$\mathrm{h}_{\text {fe }}$	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$ typ $=120$	$\min =40$
$\mathrm{V}_{\text {BE (SAT) }}$	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$ typ $=0.8$	$\max =1 \mathrm{~V}$
DM74S287	PROM	
$\mathrm{I}_{\mathrm{CC}}=80 \mathrm{~m}$	typ, 130 mA max	
74 C 902 Bu		
$\mathrm{I}_{\mathrm{CC}}=15 \mu \mathrm{~A}$	max	

We are now ready to calculate the value of resistor R_{2}. Resistor R_{2} is used to limit the base drive current of the PNP 2 N3467 transistor. The value of R_{2} is calculated from the voltage across R_{2} and the base current required to supply the $I_{C C}$ current required for the PROM.

Resistor calculation:

$I_{\mathrm{B}}=\frac{130 \mathrm{~mA}=I_{\mathrm{cC}}}{h_{\mathrm{fe}}=40}=3.25 \mathrm{~mA}$
\min
Base current calculation:

$$
\begin{aligned}
& R_{2}=\frac{V_{C C}-\left(V_{B E(S A T)}+V_{O L(M A X)}\right)}{I_{B}+\frac{V_{B E(S A T)}}{R_{1}-820}} \\
& R_{2}=\frac{5-(1+0.5) \mathrm{V}}{(3.25+1.0) \mathrm{mA}} \\
& R_{2}=\frac{3.5 \mathrm{~V}}{4.25 \mathrm{~mA}}=323 \Omega
\end{aligned}
$$

$R_{2}=820 \Omega$, rounding to the nearest standard value.
R_{1} is chosen to be equal to the R_{2} to simplify the parts list and this allows resistor packs (8 identical resistors in a 16 -pin package) to be used when appropriate.
Figure $3 A$ is the final circuit for the 256×8 memory.
Performance of the 256×8 power down memory is:
Power when selected 1345 mW max
Power when deselected 0 mW with 74C902 buffer Access time 180 ns max
Average power is a function of duty cycle, and for our 256×8 power down example average power is:
$P_{\text {ave(max) }}=\frac{\text { on time }}{\text { off time }}$. Power $\max =\frac{200 \mathrm{~ns}}{1000 \mathrm{~ns}}$. (665) (2)
$P_{\text {ave }(\text { max })}=\frac{1}{5}(1330)=265 \mathrm{~mW}$ max
The 265 mW assumes that all parts are maximum at the same time. The more likely situation is that parts will be at or near their typical value.
For our example:
$P_{\text {ave }(\text { trp })}=\frac{1}{5}(830)=166 \mathrm{~mW}$ ave $_{\text {typ }}$

Figure 3A. 256×8 Power Down Memory

Figure 3B.

