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1.0 Introduction
The premise of fractional N frequency synthesis is to use a
feedback (N) counter that can assume fractional values. In
many applications, this allows a lower N counter value and a
higher phase detector frequency. The lower N counter value
leads to lower phase noise because the N counter value mul-
tiplies the noise of the PLL system. The higher phase detector
frequency leads to spurs that are farther from the carrier and
thus easier to filter as well as the option to widen the loop
bandwidth for faster lock time.

Although all these benefits predicted by theory are true, they
are based on the assumption that the fractional circuitry of the
N counter is ideal. The actual performance improvements that
are realized will not be as good as theory predicts because
the circuitry involved in allowing the N counter to be fractional
generates phase noise and spurs of its own. To really under-
stand the true benefits of using a fractional N PLL, a greater
understanding of the device, application, and architecture is
required. In terms of fractional N PLLs, they will be grouped
into two distinct categories: traditional and delta-sigma. Tra-
ditional fractional PLLs are those that use analog compensa-
tion to reduce the fractional spurs. Delta sigma PLLs are those
that use digital delta-sigma techniques to reduce the fraction-
al spurs. Both of these will be discussed in much greater depth
later.

In order to understand fractional PLLs can be explored at all,
one must first have a good understanding of integer N and
basic PLL concepts. The next step of understanding is tradi-
tional fractional PLLs, because their spur levels and phase
noise are easy to predict. The final step is to explore delta
sigma PLLs, since the prediction of their spurs and phase
noise has the most challenges and exceptions. The topics in-
cluded in this application note are as follows:

Integer N and Basic PLL Concepts

• Basic Concepts and Architecture

• Phase Noise

• Spurs (Integer

Traditional Fractional N Concepts

• Basic Concepts and Architecture

• Phase Noise

• Spurs (Primary Fractional)

Delta Sigma Fractional N Concepts

• Basic Concepts and Architecture

• Phase Noise

• Spurs (Primary Fractional, Sub-Fractional, and Crosstalk)

By understanding all of these concepts, then one will have a
better understanding of when it makes the most sense to
choose an integer PLL, traditional fractional PLL, or delta-
sigma fractional PLL.

2.0 Integer N PLL Concepts

2.1 BASIC PLL CONCEPTS AND ARCHITECTURE

The phased locked loop takes a fixed frequency, fOSC, and
divides it by a fixed value, R, to get the phase detector fre-
quency, fPD. This phase detector frequency is multiplied by N
to get the final output frequency of fVCO. The VCO frequency
is tuned by changing the N counter value, and the channel
spacing of this VCO is fCH.

fVCO = fOSC x N/R
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FIGURE 1. The Basic PLL

For performance reasons, it is desirable to minimize the N
counter value and maximize the phase detector frequency.
Assuming the N counter value to be an integer, the largest
that fPD can be chosen is the channel spacing, fCH. However,
there could be additional restrictions that can restrict fPD to a
smaller divisor of fCH. For instance, the phase detector fre-
quency must also divide the oscillator frequency. This implies
that :

Because of the channel spacing requirement, the phase de-
tector frequency is therefore:

fPD = GCD (fOSC , fCH)

In the above equation GCD(x,y) denotes the greatest com-
mon divisor, which is the greatest number that divides x and
y. AN-1865 discusses application of this concept to non-inte-
ger arguments as well as other frequency planning concepts.
For instance, if a channel spacing of 1 MHz was desired, then
it would be desirable to choose the phase detector frequency
to be 1 MHz, but this would only work if fOSC was also a mul-
tiple of 1 MHz. If the oscillator frequency was 19.68 MHz, then
the above formula would have to be used to calculate fPD =
GCD(19.68 MHz, 1 MHz) = 10 kHz.

2.2 UNDERSTANDING TRANSFER FUNCTIONS AND
ROLLOFF

In order understand spurs and phase noise of a PLL, it is
necessary to understand how they are shaped by the loop
filter. The first step in doing so is to understand the open loop
transfer function, G(s), which can be found from the phase
detector gain, KPD, the VCO gain KVCO, and loop filter transfer
function, Z(s).
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From the open loop transfer function, the closed loop transfer
function, CL(s), is given by:
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The closed loop transfer function is important because it
shapes the phase noise and spurs. At frequencies less than
the loop bandwidth, the closed loop transfer function is rela-
tively flat as a function of frequency and has a magnitude of
20·log(N). In other words,

30072106

It is this factor in that multiplies the phase noise and integer
N PLL spurs, which is the motivation for doing a fractional N
PLL that allows lower N values. Although this factor holds true
for integer N PLL spurs and phase noise, it does not always
come into play for fractional N PLL phase noise and spurs.
For this reason, it is more convenient to subtract off this factor
of 20·log(N) from magnitude of the closed loop transfer equa-
tion and define a new term called rolloff. Rolloff is a function
of the offset frequency and shapes the phase noise and spurs.

30072132

(Rolloff Equation)

Figure 2 shows the rolloff of a PLL system that has a loop
bandwidth (BW) of 237 kHz, which will be used in later ex-
amples.

30072102

FIGURE 2. PLL Rolloff Example
(BW = 237 kHz)

2.3 PLL PHASE NOISE

There are many contributors to the phase noise such as the
reference oscillator, VCO, loop filter resistors, PLL dividers,
PLL phase detector, and PLL charge pump. The oscillator,
VCO, and loop filter resistor noise are application specific and
not the focus of this application note. For the purposes of
simplification, the noise of the PLL dividers, phase detector,
and charge pump will all be lumped together and referred to
as PLL noise. There are basically three main contributors to
the PLL phase noise. For all PLLs, there is a flat noise and 1/
f (flicker) noise produced by the charge pump. In addition to

this, fractional parts will also have noise added due to their
fractional compensation. After all these noise sources are
added together, they are shaped by the rolloff of the PLL sys-
tem. In other words, the PLL phase can be calculated as
follows:

30072133

For the purposes of modeling integer PLL phase noise, it is
usually sufficient to only consider the impact of the PLL flat
noise, provided that the phase detector frequency is not too
high (<1 MHz). However, if the phase detector frequency is
higher, the 1/f noise may become more exposed and need to
be considered.

2.3.1 PLL Flat Noise

The PLL flat noise increases as the N divider value increases
and the part-specific performance can be captured in a con-
venient index called the 1 Hz normalized phase noise,
PN1Hz. If the charge pump current is increased, then this in-
dex will improve, but there will be a point of diminishing
returns.

30072134

If the output frequency is held constant, but the N counter
value is decreased, then this also means that the phase de-
tector frequency increases. For this situation, the phase noise
is proportional to 10·log (NNew / NOld). In other words, if the N
counter value is decreased by a factor of 10 with the output
frequency held constant, then the phase detector frequency
will increase by a factor of 10 and the PLL flat noise will im-
prove by 10 dB. However, this phase noise improvement may
be masked at some offsets by the 1/f noise and the noise due
to the fractional compensation.

2.3.2 PLL 1/f Noise

Active devices, including the PLL charge pump, produce a
flicker (1/f) noise that decreases at 10 dB/decade with offset
from the carrier. The 1/f noise of the PLL does not improve
with higher phase detector frequencies as the flat noise does,
so it becomes more important consideration when the phase
detector frequency is high, as is the case with fractional PLLs.
Simple experiments show that the PLL 1/f noise increases 20
dB/decade as a function of fVCO, but is independent of fPD and
the N counter value, provided that fVCO is held constant. This
1/f noise can be normalized to a 10 kHz offset and 1 GHz VCO
frequency, PN10kHz. From this index, the unshaped 1/f noise
of the PLL can be calculated anywhere.

30072135

If the phase detector frequency is increased with a constant
VCO frequency, the flat noise will improve, but the 1/f noise
will not. Figure 3 shows phase noise data from an LMX2485
evaluation board driven with 100 MHz Wenzel crystal that has
phase noise far below what is being measured. Raising the
phase detector frequency improves the far out phase noise at
offsets past 10 kHz, but for low offsets that are part of the 1/f
noise, like 100 Hz, the impact is minimal.
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FIGURE 3. 1/f Noise and Phase Detector Frequency
(KPD = 16X)

Reference [1] establishes that the charge pump is the only
phase noise source that is theoretically divided by the charge
pump gain and therefore suggests the 1/f noise in Figure 3 is
really due to the charge pump and not some other source.

30072104

FIGURE 4. Charge Pump Current and 1/f Noise
(fPD = 50 MHz)

2.4 INTEGER PLL SPURS

Because the phase detector is updating the loop filter voltage
at a rate equal to the phase detector frequency, there will be
spurious tones at the output of the VCO at offsets equal to the
phase detector rate. For an integer N PLL, this phase detector
rate will be equal to the channel spacing. There are basically
two causes of these spurs: leakage of the charge pump caus-
es modulation on the VCO tuning line, which leads to spurs
[1].

LeakageSpur =

20·log(2π·Leakage/KPD) + 20·log(N) + rolloff(fPD)

In addition to this, there are other effects such as dead zone
elimination circuitry and unequal turn on times of the PMOS
and NMOS transistors in the charge pump. All these addi-
tional effects can be lumped into a single index called
BasePulseSpur that can be used as an part-specific index.
The spur due to these pulse effects can be modeled as [1]:

PulseSpur =
BasePulseSpur + 20·log(N) + 40·log(fPD) + rolloff(fPD)

The integer PLL spur can be found by adding these two spur
contributors together [1].

IntegerSpur = 10·log( 10LeakageSpur/10 + 10PulseSpur/10 )

Reference [1] goes into considerable detail as to the theory
of integer PLL spurs and discusses how to predict them for
various National Semiconductor PLLs. If the phase detector
frequency is low, then the LeakageSpur tends to dominate. If
it is higher, then the BasePulseSpur tends to dominate due to
the 40·log(fPD) term. Regardless of whether the spur is dom-
inated by pulse effects or leakage effects, notice the
20·log(N) term in their calculations. This is why integer PLL
spurs increase as 20·log(fVCO).
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3.0 Traditional Fractional N PLLs

3.1 FRACTIONAL N BASIC CONCEPTS

Recall that for the integer N PLL, the phase detector frequen-
cy was limited to the channel spacing, or smaller. The reason
for this is that the N counter is restricted to integers. For frac-
tional PLLs, the N counter is allowed to assume some frac-
tional values as well. The fractional denominator, Fden, for a
specific device can either be fixed or programmable. Fnum is
the fractional numerator and is intended to assume values
from 0 to Fden-1. Traditional fractional N and delta-sigma
fractional N PLLs are the same in this regard, although delta
sigma PLLs typically have more flexibility for the choice of
Fden due to architecture. The total N counter value is as fol-
lows:

N = NINT + Fnum/Fden

For fractional parts, the phase detector frequency can now be
chosen as:

fPD = GCD(fOSC , fCH x Fden)

For a fractional PLL that has Fden programmable, Fden
should be chosen to maximize the above expression for fPD.
For example, consider a case with a device that has Fden
programmable from 2 to 128 with a fCH = 1 MHz and fOSC =
19.68 MHz. In this case:

fPD = GCD (19.68 MHz, 1 MHz x Fden)
= 0.04 MHz x GCD (492, 25 x Fden)

So Fden should be chosen from 2 to 128 and to have the
largest possible common factor with 492. Since 492 = 2 x 2 x
41 x 3, it follows that a value of Fden = 41 x 3 = 123 would be
the optimal choice. The phase detector frequency can be cal-
culated as follows:

fPD = 0.04 MHz x GCD (492, 25 x 123) = 1.23 MHz

Table 1 shows an example with a fCH = 1 MHz channel spac-
ing and a fOSC = 19.68 MHz using three different kinds of
PLLs.

TABLE 1. PLL Configuration Example

Parameter

Integer

PLL

Example

Fractional

PLL

Example

Delta Sigma

Fractional PLL

Example

fOSC 19.68 MHz

fVCO 902 - 928 MHz

fCH 1 MHz

Device LMX2316 LMX2364 LMX2485

Doubler No No Yes

Maximum

fPD

10 MHz 10 MHz 50 MHz

Minimum

N Value
992 56 31

Allowable

Fden
1 1 - 128 1 - 4194303

Chosen

Fden
1 123 1968

fPD 10 kHz 1.23 MHz 19.68 MHz

N Value
90200

- 92800

733 41/123

- 754 58/123

45 1640/1968

- 47 304/1968

For the delta sigma fractional part, fPD can be chosen as high
as fOSC. Although this device has a frequency doubler, the
doubler can not be used because this would violate the min-
imum N counter value of 31. For the avid reader, National
Semiconductor application note AN-1865 goes into more de-
tail of how to calculate the GCD and calculate frequencies for
fractional PLLs.

3.2 THEORY OF OPERATION

Traditional fractional N PLLs allow fPD to be increased by al-
lowing the N counter to assume fractional values. The way
that this is achieved is that the the N counter is alternated
between two integer values such that the average value is the
desired fraction. Figure 5 shows a traditional fractional PLL
with no analog compensation. Due to the digital nature of this
circuit, it is common to represent this in the Z domain, which
is discussed in more detail in Appendix A. The integer portion
of the N counter value, NINT, is handled normally and the frac-
tional part is handled by additional fractional circuitry, which
is made up of an accumulator and a quantizer. The previous
output of the quantizer is subtracted from the input fraction
and this error is added in the accumulator. When the error in
the accumulator is less than one, the output of the quantizer
is zero. However, when the error in the accumulator adds to
one or more, then the output of the accumulator is one. On
the next phase detector event, this output is subtracted from
the fractional word input. In this way, the output of the quan-
tizer is a stream of ones and zeros that have an average value
equal to the desired fraction of Fnum/Fden.
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FIGURE 5. Traditional Fractional N PLL

30072105

FIGURE 6. Uncompensated Fractional N Example

Consider the fractional PLL example in Table 1 with a desired
output frequency of 902 MHz. In this case, the N counter value
is 733 + 41/123, which simplifies to a fraction of 733 1/3. For the
first two times the divider divides by 733, the frequency will
be too high, but then for the third time when the divider divides
by 734, this frequency will be lower in an amount such that
the total period is equal to the period of the ideal signal.

Figure 6 shows that although the average frequency is cor-
rect, the actual frequency is frequency modulated between
733 and 734 MHz. This frequency modulation gives rise to
undesired spurious tones in the frequency domain. In the time
domain, this can be viewed as an instantaneous phase error.

Because this error is presented to the phase detector, which
is triggered only on the rising edges of the output of the N
counter, only the errors in the timing of the rising edges mat-
ters. This error gives rise to large fractional spurs if not cor-
rected. For the traditional fractional PLL, there are two
common methods that are used to compensate for this in-
stantaneous phase error. One method is to allow this error to
go to the phase detector/charge pump and then cancel the
resulting error current it produces with a current of opposite
polarity. The challenge with this method is that it is difficult to
get a current value that is good over voltage, process and
temperature. A second method is to use an analog delay to
make the output correspond to the ideal output. Although this
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method might be easier to optimize over voltage, process,
and temperature, it also adds phase noise. Both the current
compensation and the delay methods can certainly reduce
the spurs, but they have their imperfections.

3.3 PHASE NOISE FOR TRADITIONAL FRACTIONAL
PLLS

Phase noise for traditional fractional N PLLs behaves in a very
similar way to fractional PLLs with the exception that the frac-
tional compensation may add noise. The nature of this noise
is device specific. For instance, the LMX2364 uses analog
delays to compensate for the fractional spurs. Because these
analog delays are not perfect they add phase noise. For this
device, the added phase noise is 7 dB to the PLL flat noise
when this compensation is enabled. For traditional fractional
N PLLs, one has to weigh the added benefits of the lower N
counter value against the added noise from the fractional cir-
cuitry. Knowing that the PLL flat noise improve 3 dB every
time the phase detector frequency is doubled, and that log (5)
~ 7, it follows that using this device in a fractional mode only
provides a phase noise benefit if the phase detector frequen-
cy can be increased by at least a factor of 5.

3.4 UNDERSTANDING TRADITIONAL FRACTIONAL N
SPURS

The first step in understanding fractional spurs of any sort is
to is to understand the behavior of a traditional fractional N
PLL with no compensation for a worst case fraction. By doing
a Fourier analysis on the quantizer output in Figure 6 the
fractional spurs can be calculated as they are in reference [1].
Real world devices will have fractional compensation, and the
effect of this will be to lower the fractional spurs by some fixed
amount. For instance, the LMX2364 spurs can be predicted
with good accuracy by mathematically calculating the uncom-
pensated spur levels and then reducing all their levels by 18
dB. The magnitude of these fractional spurs will change
around, but the worst case is when Fnum=1 and the offset
frequency of this worst case spur will be fPD / Fden. For this
worst case, a device-specific index of InBandSpur can be ex-
trapolated from measured data as is done in Table 2, which
is what this worst case fractional spur would theoretically be
with no filtering from the loop filter.

TABLE 2. InBandSpur for Various National
Semiconductor PLLs

Part
InBandSpur

(Fnum = 1)
Comments

Theoretical

(Uncompensated)
0 dBc

Calculated from

pure theory

Fden > 7

LMX2364

(Compensation

Disabled)

1.6 dBc
Measured and very

predictable

LMX2364

(Compensation

Enabled)

-18 dBc
Measured and fairly

predictable

LMX2470

(4th Order

Modulator)

-40 dBc

These numbers can

vary based on setup

conditions. Far

outside the loop

bandwidth,

crosstalk effects

may need to be

considered.

LMX2485

(2nd Order

Modulator)

-36 dBc

LMX2485

(3rd Order

Modulator)

-46 dBc

LMX2485

(4th Order

Modulator)

-55 dBc

LMX2531 -40 dBc

In order to account for the effects of the loop filter, simply add
the rolloff (refer to the rolloff equation in Section 2.2 UNDER-
STANDING TRANSFER FUNCTIONS AND ROLLOFF).

FractionalSpur (Worst Case) = InBandSpur + rolloff(fSpur)
(Traditional Fractional Spur Equation)

30072107

FIGURE 7. Traditional LMX2364 Fractional Spurs

Figure 7 shows fractional spurs measured on the LMX2364
evaluation board with setup conditions described in Appendix
C. Fnum fixed at one and Fden varied from 2 to 128 in steps
of one. For this example, fPD was 2 MHz, so therefore the spur
offset frequency in MHz was 2 / Fden. There are some minor
irregularities, such as near 62 kHz offset frequency and at
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higher offsets, but these can be explained by part-specific
behaviors of the LMX2364 and approximations that break
down down for Fden < 8. However, the general trend of both
the compensated and uncompensated fractional spur follow-
ing the rolloff of the loop filter is clear.

So far, only first fractional spur, which is at an offset of
fPD / Fden has been discussed, but there are higher order
fractional spurs. In general, the nth fractional spur is at an off-
set equal to n x fPD /Fden. These spurs can also be predicted,
but typically they are less troublesome than the first fractional
spur because they are at higher offsets and are easier to filter.
These spurs can also be predicted with excellent accuracy,
as done in reference [1]. One easy case where these can be
predicted is in the case of the case when Fden is large (>20).
In this case, the worst case for the nth fractional spur occurs
when Fnum = n and has a magnitude about the same as In-
BandSpur. For instance, if a part has InBandSpur of -18 dBc,
fPD = 2 MHz, Fden = 100, and Fnum = 7, then the spur at 140
kHz would be -18 dBc + rolloff(140 kHz).

The next question that might come up is how the first fractional
spur might vary for a numerator that is not equal to one. One
simple case is when Fnum = Fden -1, which yields the same
spur spectrum as Fnum = 1. Following this case, the first thing
one should check is that if Fnum and Fden have any common
factors. If they do, then the first fractional spur will not be
present. In the case that Fnum and Fden have a common
factor, the easiest way to calculate the fractional spurs would
be to simplify the fraction of Fnum / Fden to lowest terms and
then to the analysis on this new fraction. For instance, if the
fractional denominator was fixed to 123, the fraction is 3/123
would reduce to 1/41. So although most channels in this ex-
ample would have fractional spurs at every multiple of 1.23
MHz / 123 = 10 kHz, this particular frequency would have
fractional spurs at every multiple of 1.23 MHz / 41 = 30 kHz.
Another way of thinking about this would be that the first and
second fractional spurs are not present for this channel, but
the third fractional spur would be present. So provided that
the fraction simplifies to something with a numerator of 1 or
Fden - 1, the fractional spurs can be predicted with the meth-
ods already discussed.

The next thing to account for is when the fraction simplifies to
something that does not have a numerator of 1 or Fden - 1.
To do this, a new term , SpurMagnitude, is introduced to
quantify how close to the worst case the Fden is. A SpurMag-
nitude of one is the spur for the worst case numerator. A
SpurMagnitude of 2 is for the second worst case numerator.
Summarizing the results in reference [1], the following gen-
eralization can be made:

FractionalSpur =
InBandSpur + rolloff(fSpur) - 20·log(SpurMagnitude)

TABLE 3. In-Band Uncompensated First Fractional Spur

Spur

Fractional Numerator of

Occurrence

Uncompensated

In-Band Spur

Magnitude

General Case
This

Case

General

Case

This

Case

Worst

Case

1

and

Fden-1

1

and

122

0 dBc 0 dBc

2nd

Worst

Case

int(Fden/2)

and

Fden - int(Fden/2)

61

and

62

-6 dBc -6 dBc

3rd

Worst

Case

int(Fden/3)

and

Fden - int(Fden/3)

Not

Present
-9.5 dBc

Not

Present

4th

Worst

Case

int(Fden/4)

and

Fden - int(Fden/4)

Not

Present
-12 dBc

Not

Present

kth

Worst

Case

int(Fden/k)

and

Fden - int(Fden/k)

-20·log (SpurMagnitude)

(If Present)

Summarizing further the results of reference [1], the second
worst case for the spur occurs at when Fnum is int(Fden/2)
or Fden - int(Fden/2). If it turns out that this value for Fden has
common factors with Fden, then the second worse case is not
present, and one just goes the third worst case. The third
worst case occurs when Fnum is int(Fden/3) or Fden - int
(Fden/3), provided that this value for Fnum has no common
factors with Fden.. The kth worst case occurs when Fden is
int(Fden/k) or Fden - int(Fden/k), provide that this value for
Fnum has no common factors with Fden. To further explain
this, Table 3 applies this concept to the fractional PLL exam-
ple given in Table 1 and assuming a theoretical uncompen-
sated fractional PLL. In this case, Fden is 123 and the channel
spacing is 10 kHz. Therefore, the first fractional spur will be
10 kHz offset from the carrier, and will have a worst case
magnitude of 0 dBc occurring at a numerator value of 1 and
122. The second worst case for this fractional spur will be
when the fractional numerator is int( 123/2 ) or int(  123/2 - 1 )
with a magnitude of -20·log (2). This works out to Fden = 61
or 62 with a magnitude of -6 dBc. Now for the third and fourth
worst cases, these spurs are not present because int(123/ 3)
= 41 and int(123/4) = 30 both have a common factor with 123.
The pattern for the second and third worse cases for these
higher order spurs is much more complicated than for the first
order spur and beyond the scope of this application note. For
more detailed information on these spurs, the avid reader is
encourage to consult reference [1].

In some applications it may be possible to avoid some of these
worst case spurs by changing the TCXO frequency or shifting
the VCO frequency. For this example, consider what would
happen if the crystal frequency was changed to 10 MHz. In
this case, the phase detector frequency could be raised to 10
MHz, and the fractional spurs would be at offsets in multiples
of 1 MHz from the carrier, instead of 10 kHz. This would be a
massive improvement. However, further improvement is pos-
sible still. If the TCXO frequency was changed to 30 MHz,
then, the fractional denominator, Fden, would be 30. Now the
worst case fraction would be when the fractional numerator
would be 1 or 29. However, these values correspond to fre-
quencies of 901 MHz and 929 MHz, which are both out of the
frequency band of 902 – 928 MHz, so these worst case nu-
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merators could be avoided. The second worst case would be
when the fractional numerator is 15, but since this divides
evenly into 30, the first fractional spur would not be present
in this case either. The same thing would happen for the third
fractional spur. So finally, on the fourth fractional spur, this
spur would be present, but theoretically it would be 12 dB
lower than what it would be for the 10 MHz TCXO.

In conclusion, the worst and most troublesome cases for tra-
ditional fractional spurs can be reasonably modeled provided
that the fraction and rolloff are known. One observation re-
garding fractional spurs that, unlike integer PLL spurs, frac-
tional spurs are theoretically independent of VCO frequency.
This lays the foundation for the understanding for all fractional
spurs, but for delta-sigma PLLs there are other complexities
that need to be considered.

4.0 Delta-Sigma PLLs

4.1 THEORY OF OPERATION

For the traditional fractional PLL, analog compensation is
used to reduce the fractional spurs, although this has its
shortcomings. Delta sigma PLLs aim to reduce spurs using
digital techniques so that there is minimal added phase noise
and the fractional spurs are reduced even lower. There are
really two common digital techniques that are employed. The
first technique involves varying the N counter value over a
wider range of values in order to reduce the primary fractional
spurs. Just as the first order modulator alternates the N
counter between two values, the nth order delta sigma frac-
tional PLL modulates the N counter between 2n different
values. Expanding on the example presented for the tradi-
tional fractional PLL, instead of using just the values of 773
and 774 to achieve 773 1/3, the values of 772, 773, 774, and
775 could be used in a second order delta sigma PLL. A third
order modulator could alternate between 8 different counter
values and a fourth order modulator could alternate between
16 different counter values. As a rule of thumb, higher order
modulators outperform lower order modulators, but not in all
situations; this is application specific.

TABLE 4. Delta Sigma Modulator
Example

Modulator

Order
Range

Sample

Sequence

First

(Traditional PLL)
0, 1 773, 773, 774, ...

Second -1, 0, 1, 2
772, 774, 771,

773, 775, 774, ...

Third -3, -2, ..., 3, 4

770, 773 ,774,

771, 772, 776,

775, 772, 770,

771, 777, 772, ...

Fourth -7, -6, ..., 7, 8

766, 777, 770,

767, 781, 780,

769, 771, 774,

773, 775, 776,

768, 780, 768,

771, 773, 781,

780, 772, 777

772, 770, 769 ...

A second technique used to improve sub-fractional spurs in
delta sigma PLLs is called dithering. For the first order mod-
ulator example in Table 4, the cycle repeats every three time
steps (each time step is 1/fPD). The period is twice that for the
second order modulator, 4 times that for the third order mod-
ulator, and 8 times that for the fourth order modulator. This
periodicity is undesirable and can give rise to sub-fractional
spurs, which are spurs that occur at a fraction of the primary
fractional spur frequency. In order to reduce this periodicity,
a technique called dithering can be used. Dithering involves
randomizing this sequence so that it is pseudo-random and
the period is not so obvious. By doing this, the sub-fractional
spurs are reduced. In practice, dithering impacts sub-frac-
tional spurs, but has little impact on the primary fractional
spurs. In some situations, it can add small amounts of phase
noise.

The traditional fractional PLL as shown in Figure 5 is techni-
cally a first order delta sigma PLL with analog compensation,
although the industry standard for the term "delta-sigma" PLL
typically assumes no analog compensation and the order is
at least second order or at least dithering is used. There is
more than one way to create a higher order delta sigma PLL,
but one common way is the the MASH (Multi-stAge noise
SHaping) architecture. In this architecture, the output of each
stage is fed into the next stage, and the errors from all stages
are summed together. Figure 8 shows a third order delta sig-
ma PLL using MASH architecture.
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30072110

FIGURE 8. Third Order Delta Sigma Modulator

4.2 DELTA SIGMA PLL PHASE NOISE

4.2.1 Simplified Delta Sigma Phase Noise

Figure 8 shows that the quantization noise from all stages
except for the last is canceled out. If one makes the simplifying
assumption that the quantizer output is a uniformly distributed
random variable between zero and one, the spectral density
of an nth order delta sigma modulator can be calculated as
follows [4]:

30072144

(Modulator Noise Equation)

30072111

FIGURE 9. Simplified Delta Sigma Modulator Noise
(fPD = 10 MHz)

Figure 9 shows this theoretical noise for a 10 MHz phase de-
tector frequency. Notice at 5 MHz, which is exactly half of the
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phase detector frequency, there is a maximum value. In gen-
eral, the quantization noise achieves its maximum value at
fPD/2. After this frequency, the noise decreases and is also
attenuated more by the loop filter. Therefore, it is this partic-
ular frequency that commonly is the one that is most likely to
cause a problem. The theoretical value of this peak value in
the noise is shown in Table 5.

TABLE 5. Magnitude of the First Lobe vs. fPD

fPD

2nd Order

Modulator

3rd Order

Modulator

4th Order

Modulator

1.25

MHz
-49.8 -43.8 -37.8

2.5 MHz -52.8 -46.8 -40.8

5 MHz -55.8 -49.8 -43.8

10 MHz -58.8 -52.8 -46.8

20 MHz -61.8 -54.8 -49.8

40 MHz -64.8 -57.8 -52.8

It can also be shown that for offsets that are much less than
fPD/2, the noise increases with a slope of 20·(n-1) dB/decade.
In other words, if the order of the modulator is increased, then
a higher order loop filter may be necessary. One rule of thumb
for delta sigma PLLs is that the order of the loop filter should
be one greater than the order of the delta sigma modulator.
This rule is approximate and overconservative in some cases.
In practice, if the loop bandwidth is narrow enough, then these
higher order loop filters may not be necessary. It also turns
out that although the fourth order modulator would theoreti-
cally require a fifth order loop filter, a fourth order loop filter is
typically sufficient. Appendix B has more properties of the
delta sigma modulator noise as well as their corresponding
derivations.

4.2.2 Measured Delta Sigma Noise and Randomization
Effects

In order to validate the modulator noise equation in Sec-
tion 4.2.1 Simplified Delta Sigma Phase Noise, a LMX2485
PLL evaluation board was used with the wide loop bandwidth
setup in Appendix C to have the rolloff as described in Figure
2. It must be firmly emphasized that many of these examples
are done with much less filtering than is typically used to fully
expose all the effects to be studied. In other words, it is invalid
to compare these results to some other results without taking
into account the impact of the loop filter. The measured delta
sigma noise with the rolloff subtracted away is shown in Fig-
ure 10.

30072112

FIGURE 10. Measured Delta Sigma Modulator Noise
(fPD = 10 MHz, Strong Dithering, Fraction = 1/4914303)

Comparing the measurements to the theoretical data, there
is excellent agreement except at very low frequencies. At
these low frequencies, the noise becomes flat. Further ex-
periments showed that there was no consistent trend for this
low offset noise for a particular modulator order, phase de-
tector frequency, dithering mode, output frequency. In this
case as shown in Figure 10, the quantization noise was well
randomized and the assumption that it is a uniformly distribut-
ed random variable between zero and one holds. This is why
there is such nice agreement.

30072113

FIGURE 11. Impact of Fractional Denominator
(fPD = 10 MHz, No Dithering, 3rd Order Modulator)

Figure 11 shows the raw phase noise data taken with an
E5052 phase noise analyzer with the spurs in dBc. Even
though both fractions are both very close to 1/100, the one
with the larger denominator shows that the noise is much
more uniformly distributed with less discrete spurs, especially
the one at 100 kHz offset.
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30072114

FIGURE 12. Impact of Dithering
(fPD = 10 MHz, Order = 3rd, Fraction = 1/100)

When dithering was used, this also made the noise more ran-
domized as shown in Figure 12.

30072115

FIGURE 13. Impact of Modulator Order
(fPD = 10 MHz, No Dithering, Fraction = 1/100)

Figure 13 shows the impact of the modulator order. Although
higher order modulator does seem to produce less spurious
content in this case, it is much more obvious in Figure 14
where the fraction of 1/100 is expressed in higher terms of
10000/1000000.

30072116

FIGURE 14. Impact of Modulator Order
(fPD = 10 MHz, No Dithering, Fraction = 1000/1000000)

These figures demonstrate that the delta-sigma modulator
noise is best randomized when large fractions, higher order
modulators, and dithering is used. Although these conditions
are best for randomizing the delta sigma modulator noise,
they might not be right for every applicaitons. In some situa-
tions, expressing fractions in larger terms might give rise to
additional spurs at lower offsets. Higher order modulators
help with randomization and also the primary fractional spur,
but sometimes give rise to sub-fractional spurs that occur at
a fraction of where the fractional spur would occur. Dithering
randomizes the noise, but sometimes can degrade close-in
phase noise. Also, if dithering is used with a fractional nu-
merator of zero, it creates noise and spurs that would other-
wise would not be there.

4.3 DELTA SIGMA FRACTIONAL SPURS

In general, delta sigma spurs can be of two types: primary and
sub-fractional. The primary spurs are those that would occur
at offsets that would be the same as a traditional fractional N
PLL. There are various things that can be done to adjust their
level, but they behave and can be modeled in the same way
as traditional N fractional spurs. The other type of spurs are
sub-fractional spurs that occur at an offset that is a fraction of
where the primary fractional spur occurs. These spurs rolloff
with the loop filter in a similar way as the primary fractional
spurs, but there are many nuances to their behavior. The fol-
lowing sections go into discussion of both of these types of
spurs.

4.3.1 Understanding Delta Sigma Primary Fractional
Spurs

Delta sigma PLLs greatly reduce the in-band fractional spur
by modulating the N counter value with more than two values.
Although the compensation is digital, the spur levels are im-
pacted by many factors. All of the architecture specific factors
can be captured in the in-band spur metric. However, there
are also many other settings that can be under the user’s
control that also impact these spur levels, such as phase de-
tector frequency and modulator order. These effects are often
difficult to predict and often pure textbook predictions with no
grounding of measured results can be far off. Recall that for
phase noise, it was assumed that the quantization noise, Qn
(t) was uniformly distributed between 0 and 1. A lot of the ef-
fects seen on spurs are seen because this noise is not uni-
formly distributed in this manner.
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30072117

FIGURE 15. Measured Fractional Spurs
(fPD = 10 MHz, Strong Dithering, Fraction = x / 4194303)

Figure 15 shows delta sigma primary fractional spurs mea-
sured on the same modified LMX2485 evaluation board. It
should be emphasized that although this figure and many
others to follow might appear as a smooth graph, they are
really a collection of discrete spur measurements taken with
an automated test program over many different fractional nu-
merators and should not be confused with phase noise plots.

30072118

FIGURE 16. Normalized Fractional Spurs
(fPD = 10 MHz, Strong Dithering, Fraction = x / 4194303)

Figure 16 shows the normalized fractional spurs, which are
the measured fractional spurs with the rolloff subtracted
away.In Figure 16, the normalized fractional spurs are rela-
tively consistent until the spur offset gets close to fPD / 2, which
is the same offset where the phase noise peaks. Furthermore,
at 1.67 MHz, which is fPD/ 6, the difference in normalized spur
levels between modulator orders is about the same as it is in-
band. Experiments with other loop bandwidths and phase
detector rates show that this unshaped peaking at fPD/2 is not
really impacted much by the loop bandwidth, although it will
always be at a frequency higher than the loop bandwidth be-
cause the PLL loop bandwidth can only be made as wide as
about fPD / 10. Although there is the shaping of the modulator
at offsets far outside the loop bandwidth, these effects can

easily be masked by spurs due to crosstalk, so it makes little
sense to try to account for this. In other words, primary delta
sigma fractional spurs can be roughly modeled in the same
way as traditional fractional spurs. There may be various set-
tings that can impact the value for InBandSpur, such as the
modulator order, but once this is known for one offset, it can
be estimated for any other offset as well. For offsets far out-
side the loop bandwidth, there are crosstalk effects that will
be discussed later.

4.3.1.1 Impact of Dithering and Fractional Numerator on
Delta Sigma Primary Fractional Spurs

All the discussion so far has been done assuming a worst
case fraction, which is a fractional numerator of 1 and Fden-1.
For traditional fractional spurs, there was a big advantage if
one could avoid the fractional numerator of 1 or Fden-1. For
delta sigma PLLs, this benefit becomes more blurred and
harder to predict, but is generally true provided that the frac-
tion is well-randomized. In general, any large fraction (after
being simplified to lowest terms) is well randomized. Also, for
fractions that do simplify, such as 10000/100000, they still can
be well randomized if higher order modulators (3rd or 4th) are
used. Dithering is typically useful to make any fraction act
more randomized, but if the fraction is small, it may also create
extra phase noise and spurs at other offsets.

Figure 17 shows data taken from the LMX2485 PLL with a
fractional denominator of 101. The phase detector frequency
was 10 MHz and the spur at (10 MHz/101 = 99 kHz) was
measured every time. The loop bandwidth was made very
wide, so this is mostly inside the loop bandwidth. If dithering
is not used, then basically every spur for every numerator
looks like the worst cases of 1 and 100. However, if dithering
is used, then there is a huge advantage if the worst case nu-
merators of 1 and 100 can be avoided. Furthermore, by
traditional PLL N theory, the next worse case would be for a
fractional numerator of 50 and 51 which Table 3 would predict
to be 6 dB lower. In this case they are closer to 20 dB lower!
This experiment shows it can be very worthwhile to avoid
these worst case spurs with delta sigma PLLs and dithering
can be helpful.

30072124

FIGURE 17. Impact of Fractional Numerator
(Fraction = x / 101, LMX2485 PLL)
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30072125

FIGURE 18. Impact of Fractional Numerator
( Fraction = x / 11, LMX2485 PLL)

Figure 18 shows the same experiment with a fractional de-
nominator of 11. In this case, dithering helped all around with
the spurs, since the fractional numerator was less random-
ized. However, now it is only about a 12 dB benefit of avoiding
the worst case numerators of 1 and 10.

4.3.2 Accounting for Crosstalk Effects on Primary Delta
Sigma Fractional Spurs

For integer PLL spurs and traditional fractional PLL spurs, the
models presented so far do a good job at predicting the spur
levels. However, for primary delta sigma fractional spurs that
are far outside the loop bandwidth, measured data quickly
shows that there are other effects that need to be accounted
for. Figure 19 shows primary fractional spurs measured an
LMX2485 PLL. Far outside the loop bandwidth, the modulator
order has minimal impact. If the rolloff is subtracted from the
raw spur levels, then the normalized spur can be found as
shown in Figure 20. Looking at this figure, we see that the
normalized spurs are nothing close to being a constant at fre-
quencies outside the loop bandwidth and the fractional spur
equation presented in Section 3.4 UNDERSTANDING TRA-
DITIONAL FRACTIONAL N SPURS needs some adjustment.

30072119

FIGURE 19. Raw LMX2485 Spurs
(BW = 10 kHz)

30072120

FIGURE 20. Normalized LMX2485 Spurs
(BW = 10 kHz)

Judging from the behavior of these primary delta sigma frac-
tional spurs at high offsets, it seems that the unexplained
effects are not being directly filtered by the loop filter. In fact,
it seems that these unexplained effects follow the transfer
function of the VCO rather than the PLL. The natural things
to suspect would be noise on the VCO power supply or noise
produced at the high frequency input pin getting back to the
VCO output. Experiments were done on the LMX2485 eval-
uation board to investigate this and it was found that increas-
ing the filtering to the VCO power supply had minimal impact,
but there the spurs could be improved about 5 dB by de-
creasing the DC blocking capacitor or increasing the series
resistor to the high frequency input pin. Because these spurs
do not seem to be directly filtered by the loop filter, they will
be referred to as crosstalk spurs (XtalkSpur). However, the
nature of this crosstalk seems to be more something related
to the isolation between the VCO output and the N counter
input rather than crosstalk between board traces.

In Figure 19, observe that the spurs degrade at 20 dB/decade
with the spur offset frequency. By treating the spur offset fre-
quency as the modulation frequency and applying traditional
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FM modulation theory, these 20 dB/decade degradation of
these spurs can be explained by the following formula:

Spur = 20·log( β )
β = Frequency Deviation / Modulation Frequency

One factor that seems to have an impact on these crosstalk
dominated spurs is the charge pump current. Figure 21 shows
the impact of changing the charge pump current on this nor-
malized spur for the LMX2485 PLL. Decreasing the charge
pump current helps to a point, but after a certain threshold is
reached, then it does not help any more.

30072121

FIGURE 21. Normalized Spur Levels vs Charge Pump
Current

In general, the following observations have been made re-
garding these crosstalk dominated spurs (XtalkSpur):

• General Observations

— Crosstalk effects are typically far outside the loop
bandwidth.

— These spurs decrease 20 dB/decade, regardless of the
number of poles in the filter.

— These spurs follow the shaping of the VCO transfer
function

— These spurs can be normalized to a 1 MHz offset
frequency to create the index of BaseXtalkSpur.

— Although loop filter may have some residual impact,
these spurs are not impacted nearly as much as the
rolloff would predict

— They increase as 10·log(KPD) beyond a certain charge
pump current

— There may be some dependence, but there is no clear
trend with fVCO

• LMX2485 Observations

— Normalized crosstalk Spur is independent of fPD

— Reducing the coupling cap to the Fin pin may improve
this spur a few dB

— BaseXtalkSpur is about -93 dBc for KPD=1X

— Below KPD = 8X, charge pump current has no large
impact

— Increasing the resistor, or decreasing the capacitor at
the FinRF pin can lower these spurs a few dB.

— For narrow loop bandwidths and in-band fractional
spurs at offsets more than half of the loop bandwidth,
it is possible to see the effect that the in-band fractional

spur gets lower if the loop bandwidth is widened. This
would suggest crosstalk effects.

• LMX2531 Observations

— Crosstalk spur increases as 10·log(fPD)

— BaseXtalkSpur is about -99 dBc for 1X charge pump
current and fPD = 2.5 MHz

— Even between 1X and 2X charge pump current, there
is a 6 dB difference in this spur.

In general, the total fractional spurs for the LMX2485 and
LMX2531 families of delta sigma PLLs can be decomposed
as follows:

TotalFractionalSpur
= 10 ·log( 10FractionalSpur/10 + 10XtalkSpur/10 )

Figure 22 shows how the fractional spur levels shown in Fig-
ure 19 can be decomposed into a FractionalSpur and a
XtalkSpur.

30072123

FIGURE 22. Theoretical Spur Decomposition
( 4th Order Modulator )

In Figure 22 observe the XtalkSpur at farther offsets decreas-
es 20 dB/decade and tracks the VCO transfer function. The
crosstalk spur can therefore be normalized to a 1 MHz offset
frequency to create a part-specific index, BaseXtalkSpur,
which relates to the crosstalk spur as follows:

XtalkSpur = BaseXtalkSpur - 20·log(offset / 1MHz)

- 20·log( | (1+G(2π·j·offset) / N) | )

At offsets far outside the loop bandwidth, the transfer function
for the VCO is one, but at frequencies below the loop band-
width, it is less than one. Applying this theoretical model
against the modeled data, Figure 23 shows that this model
fits the measured data quite well.
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30072126

FIGURE 23. Theoretical vs. Measured Data
(LMX2485 PLL, Standard Loop Filter, 4th Order Modulator

The observations presented here are based on the LMX2485
and the LMX2531 evaluation boards, that may have some in-
fluence on the value of BaseXtalkSpur. If the spur level is high
relative to crosstalk effects, then these crosstalk effects can
be ignored. However, if their level is low, as is the case for
delta-sigma fractional spurs far outside the loop bandwidth,
crosstalk effects need to be considered. Although these
crosstalk effects could technically apply to all spurs, they are
included in the discussion of delta sigma fractional N spurs
because this is the only case where it really has a noticeable
impact. Figure 7 shows spurs with a traditional fractional PLL
that do not show these crosstalk effects, so this suggests that
these crosstalk spurs may be something that are more inher-
ent to delta sigma PLLs.

In conclusion, crosstalk effects are too significant to not be
considered for delta sigma primary fractional spurs that are
far outside the loop bandwidth. For integer PLL and traditional
fractional PLL spurs, these crosstalk effects have not been
observed. Perhaps the reason for this is that delta-sigma
spurs are lower and therefore some of these crosstalk effects
are more exposed. Another possible explation is that the dig-
ital fractional circuitry in delta sigma PLLs could be producing
noise that can crosstalk on the chip itself. If there is a question
rather crosstalk effects are really dominating a spur, one sim-
ple test is to simply program the modulator order to a different
value and see if the spur changes. If it does not, then this
implies that crosstalk effects may be at play.

4.3.3 Delta Sigma Sub Fractional Spurs

For the first order modulator example in Table 1, the cycle
repeats every three time steps (each time step is 1/fPD). The
period is twice that for the second order modulator, 4 times
that for the third order modulator, and 8 times that for the
fourth order modulator. For this example, the second order
modulator would theoretically have an a fractional spur that is
½ of the offset frequency (in addition to the primary fractional
spur) because the period is twice as long. The third order
modulator would theoretically have a sub-fractional spur that
is 1/4th of the primary fractional spur offset in addition to these
other existing spurs. The fourth order modulator would have
all these existing spurs and also a spur at 1/8th of the offset
of the primary fractional spur, although this sub-fractional spur

is typically not present. These sub-fractional spur levels can
change based on the fraction used, part architecture, dither-
ing mode, and various bit settings in the part, which makes
them a challenge to theoretically predict.

30072152

FIGURE 24. Sub-Fractional Spurs
(LMX2485E PLL, fPD = 2 MHz,2nd Order Modulator)

30072153

FIGURE 25. Sub-Fractional Spurs
(LMX2485E PLL, fPD = 2 MHz,2nd Order Modulator)

Figure 24 and Figure 25 show an LMX2485E PLL with a 200
kHz channel spacing at 50.2 MHz output frequency. Depend-
ing on how the part is set up, the sub-fractional spurs can vary.
For case 1, the PLL was tuned to 50.2 MHz with a fractional
word of 10000 / 50000 and dithering disabled. The result is a
spectrum full of sub-fractional spurs that looks terrible. In case
2, the modulator was first reset, then set to 2nd order. Al-
though the final settings for the part are exactly the same, the
action of the modulator dramatically improved the spurs. In
case 3, the PLL in case 2 was tuned to 50.1 MHz and then
back to 50.2 MHz and the spurs again became very bad. What
is going on is that the starting place in the delta sigma se-
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quence is different. By using the reset modulator, this basi-
cally ensures a predictable spur performance, although it is a
hassle. If dithering is used as in case 4, this issue of unpre-
dictable spurs is resolved, but then the phase noise is greatly
increased. For this example, the delta sigma noise and spurs
are emphasized because the lower VCO frequency. This is
because although other noise sources improve with lower
VCO frequency, , the delta sigma modulator noise and spurs
are theoretically independent of fVCO.

One confusing thing about sub-fractional spurs is that they
can change based on the initial starting point of the modulator
input. If they are measured at a particular frequency, then the
VCO is tuned away and tuned back to the original frequency,
they can change. Some parts have features such as dithering
and an automatic reset of the modulator that can these more
predictable. This erratic behavior of sub-fractional spurs is
emphasized in cases with wide loop bandwidths, low VCO
frequencies, and low phase detector frequencies. In addition
to this, the sub-fractional spurs tend to be more erratic for the
second order modulator because it does not randomize
enough in some cases. The third and fourth order modulators
typically have less of an issue with this randomness. Dithering
is very effective in making the sub-fractional spurs more pre-
dictable, but should be used with caution because it can
increase the phase noise in certain situations. When dithering
is used, it is often beneficial to express the fraction in higher
terms.

In other words, even though 1/5 and 10000 / 50000 are math-
ematically equivalent, the larger fraction may yield better sub-
fractional spurs. On the other hand, in this case, it can also
create a bunch of sub-fractional spurs at multiples of fPD/
50000. If a fraction is not well randomized, then the phase
noise lobes are typically broken up into smaller spurs. Inside
the loop bandwidth, the fractional spurs are similar, but out-
side the loop bandwidth, the well randomized fraction typically
can have better spurs than the randomized fraction.

30072127

FIGURE 26. LMX2485E Fractional Spurs
(Fden = 1/4)

30072128

FIGURE 27. LMX2485E Fractional Spurs
(Fden = 1/5)

For the LMX2485 family of delta sigma PLLs, expressing the
fraction with an odd denominator can help as shown in Figure
26 and Figure 27. In this case, the phase detector frequency
was shifted from 800 kHz to 1 MHz and this eliminated the
sub-fractional spurs at the expense of making the primary
fractional spurs a few dB higher. For the LMX2485 family of
PLL, this relationship seems to hold for all odd denominators.

In conclusion, although sub-fractional spurs can be determin-
istic if the part is set up in a given way, there are many inherent
nuances and it is very difficult to find one single rule that is
best in all situations. It is difficult to know the optimal way to
configure a part to reduce or eliminate these spurs without
some experimentation. Theory and models can take one so
far, but there is no substitute for the timeless techniques of
trial and error and the process of elimination [5].

5.0 Comparing Integer and

Fractional N PLL Performance
One natural consideration is to know when it is best to use a
fractional N PLL. The answer is application specific, but some
general rules of thumb is that fractional N PLLs provide the
most benefit to performance for narrower channel spacings.
Comparisons tend to be apples to oranges because integer
PLL and fractional PLLs can have other differences, such as
different charge pumps and phase detectors. Nevertheless,
some comparisons of phase noise and spurs can be made, if
done in the right way.

5.1 COMPARING PHASE NOISE

Whether valid or not, there will be those who insist on doing
an apples to apples comparison between integer and frac-
tional PLLs without providing the context of the application.
One commonly used but completely invalid way to directly
compare is to simply the 1 Hz normalized phase noise
(PN1Hz). However, this method is completely invalid if the
differences in phase detector frequency are not accounted for
by adding the following term to the integer PLL phase noise
index:

Fractional Advantage
= 10·log(fPD(Fractional PLL) / fPD (Integer PLL)

Consider the comparison between the LMX2531 (PN1Hz =
-212 dBc/Hz) and the LMK03000 (PN1Hz = -224 dBc/Hz).
Observe that the LMK03000 has 12 dB better normalized

www.national.com 16

A
N

-1
8
7
9



phase noise. If both parts were operated at the same phase
detector frequency, then this 12 dB difference would be real,
at least at farther offsets, but because the LMX2531 is frac-
tional and the LMK03000 is an integer PLL, this comparison
is not fair. If the channel spacing was 200 kHz and the crystal
frequency was 10 MHz, then the correction would be 17 dB,
implying that the LMX2531 would be 17 - 12 = 5 dB better at
farther offsets. At closer offsets (<10 kHz), one would have to
compare the 1/f noise and the noise of the crystal. On the
other hand, if the channel spacing was 10 MHz and the crystal
frequency was 10 MHz, then there is no Fractional Advantage
and maybe an integer part would make more sense.

5.2 COMPARING INTEGER SPURS TO FRACTIONAL
SPURS

Both integer and fractional N PLLs will produce spurs at an
offset from the carrier equal to the channel spacing. One nat-
ural question to ask would be to know which part would have
lower spur levels. Reference [1] describes how to calculate
these spurs for integer PLLs and these have also been dis-
cussed for fractional PLLs. A summary of these results is as
follows:

TABLE 6. Spur Comparison

PLL

Type

Spur

Type
Formula

In
te

g
e

r

Pulse

Spur

PulseSpur =

BasePulseSpur

+ 40·log(fPD) + rolloff(fPD)

Leakage

Spur

LeakageSpur =

20·log(2π·Leakage / KPD)

+ 20·log(N) + rolloff(fPD)

Integer

Spur

Total Spur =

10·log(10PulseSpur/10 + 10LeakageSpur/10)

F
ra

ct
io

n
a

l

Fractional

Spur

FractionalSpur =

InBandSpur + rolloff(Offset)

Xtalk

Spur

XtalkSpur =

BaseXtalkSpur - 20·log(Offset/10kHz)

- 20·log( | (1+G(2π·j·Offset) / N) | )

Total

Fractional

Spur

Total Spur =

10·log(10FractionalSpur/10 + 10XtalkSpur/10)

As for spurs, integer PLL spurs are multiplied by the N counter
value, where fractional N PLL spurs are not. This implies that
fractional N PLLs spurs theoretically would perform best rel-
ative to integer PLL spurs at higher VCO frequencies. Using
integer spurs models in reference [1] for the LMX2306 (KPD =
1 mA, BasePulseSpur = -313 dBc), traditional spur models for
the LMX2364 (InBandSpur = -18 dBc), and delta sigma mod-
els for the LMX2485 (InBandSpur = -55 dBc), Figure 28
shows a comparison based on a variable channel spacing
and fixed 10 kHz loop bandwidth.

30072154

FIGURE 28. Comparing Integer and Fractional PLLs

6.0 Conclusion
Fractional N PLLs allow better resolution and performance by
allowing the N counter to support fractional values. By sup-
porting fractional values, the overall N counter can be made
lower and the phase noise substantially reduced. Fractional
spurs are created and there is a lot to say about how these
fractional spurs are reduced. In the traditional PLL, this is cor-
rected with analog compensation. Although analog compen-
sation may be easier to understand and predict, the spurs are
much higher than those with digital delta-sigma compensa-
tion. Fractional N PLLs provide the most benefits for applica-
tions that have low channel spacing and higher output
frequencies, although they provide a significant benefit to al-
most every application. In fact, it is advantageous to use a
fractional part at higher frequencies and then divide this down,
since the spurs will be the same offset, but reduced in ampli-
tude, and the fractional spurs are independent of VCO fre-
quency.
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8.0 Appendix A: Fundamental Z

Transform Properties
The Z transform can be thought of as a discrete version of a
Fourier transform that converts a time domain signal to the
frequency domain. It has several applications, such as solving
difference equations and finding the frequency content of dis-
crete time-domain signals. In the context of delta-sigma PLLs,
it is useful in order to find the frequency content of the output
of the delta sigma modulator. In this context, the time step is
the period of the phase detector frequency, 1 / fPD. The Z
transform is defined as follows:

30072136

There are a few properties of the Z transform that are useful
to know as shown in Table 7.

TABLE 7. Common Z Transform Pairs

Time Domain Z Domain Comments

f (n-1) z-1·f (z)
This is a 1 clock cycle

delay

∑ f(n) 1 / ( 1 - z-1)

This is a summation which

occurs in the accumulator

of a fractional N PLL

The first property can be easily derived by multiplying both
sides for the Z transform equation by a factor of z-1. It is very

useful to recognize this property that multiplying by a factor of
z-1 is the same as a one clock cycle delay. The second prop-
erty is useful because this applies to any summation, which
occurs in the accumulator of a PLL. A summation can be
viewed as adding the previous sum to the current output as
shown in Figure 29.

30072156

FIGURE 29. Summation in the Z Domain

There are situations where it is useful to know the spectral
density of something with a digital output. For this, it is useful
to develop a link between the discrete Z domain and the con-
tinuous frequency domain. Recall the Fourier transform is:

30072137

The following substitution can be made to convert from the Z
domain to the frequency domain:

30072138
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9.0 Appendix B: Derivation of Delta

Sigma Noise Characteristics
From Figure 8, one can see that the output of an nth order
modulator would be:

30072122

However, as discussed in good detail in reference [4] this re-
sult is incomplete because it does not account for the digital
sampling action of the phase detector and the fact that the N
counter value is not constant, but rather being dithered
around. In order to account for these effects, it is necessary
to introduce the term h(z) which is defined below.

30072140

Accounting for this term, the modulator noise becomes:

30072139

To get the output spectrum of the delta sigma modulator, it is
necessary to transform from the Z domain to the frequency
domain, use the following substitution (Appendix A):

30072141

As an intermediate step, the following derivation is useful.

30072142

Applying the transform and identities yields [4]:

30072143

The above formula applies to both phase noise and spurs.
Qn (z) is simply the output of the nth quantizer minus its input.
Because the output of the quantizer can be zero or one, this
is bounded between (and including) zero and one. The spec-
tral density of the quantization noise, Qn (s), can change
based on the fractional word. However, if the fraction is large
and the modulator order is 3 or 4, then it is a fair assumption
to assume that this is a uniformly distributed random variable
between zero and one [4]. Under this assumption, the spectral
density of the quantizer output can be modeled as a uniformly
distributed random variable between zero and one, which has
a resulting spectral density of:

Qn (s) = 1/12

For noise, the appropriate function is [4]:

30072144

In Figure 9, note there is a point at which all the modulators
theoretically have the same performance. This can easily be
found by setting:

30072145

This occurs at:

30072146

Of most interest is the case where k=0. Indeed there are the-
oretically higher order occurrences, but for these, other noise
sources can mask this and the delta sigma noise tends to be
better filtered out for these frequencies. The most interesting
occurrence is therefore:

30072147

Another frequency of interest is where the unshaped noise
peaks in value. This can be found by setting:

30072148

This has a solution of:

30072149

The magnitude of the first phase noise peak can be found by
substituting this frequency as done below:

30072150

One final property of the delta sigma modulator noise is the
slope for lower frequencies at offsets much less than fPD/2. At
these lower frequencies, sin (x) can be approximated by x and
the slope can therefore be approximated as follows:
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10.0 Appendix C: Setup Conditions
This appendix discusses setup conditions that were used.
Below is a list of the equipment that was used. Automated test
scripts were used for the spur measurements. To measure
spurs at such low levels, the span of the spectrum analyzer
was a set to 10 Hz and the reported spur levels was the dif-
ference between the spur power and the carrier power. When
phase noise was measured, special care was taken to ensure
that the phase noie of the signal source was far below the
noise being measured at the VCO output.

Equipment Model Comments

Power Supply HP6623A

A LC filter with a

pole of 60 Hz was

placed on this

output to ensure that

the power supply

was clean.

Signal Source

Back of E4445A

This was used when

the reference

frequency was 10

MHz

SML03

This was only used

when the reference

frequency was

different than 10

MHz

Spectrum Analyzer E4445A
This was used for

spurs

Phase Noise

Analyzer
E5052A

This was used for

phase noise.

All these measurements were made with National Semicon-
ductor evaluation boards. For the case of the LMX2485 wide
loop filter, the components on the board were modified to in-
crease the loop bandwidth so that it would be easier to see
the performance of the delta sigma modulator. In the other
cases, the default loop filter that came with the board was
used. One thing that was dome on the LMX2364 and
LMX2485 standard loop filters was that the phase detector
frequency was decreased and the charge pump gain was
raised in the same proportion. This preserves the same loop
filter characteristics but makes it easier to measure the delta
sigma noise and spurs.

30072155

FIGURE 30. Loop Filter Setup

Attribute LMX2364 LMX2485 LMX2485 LMX2485E

Setup
Standard

Loop Filter

Wide Loop

Filter

Standard

Loop

Filter

Standard

Loop Filter

KPD (μA) 1000
1520

(16X)

1520

(16X)
760 (8X)

KVCO

(MHz/V)
45 60 60 2.5

fPD (MHz) 2 10 10 1

fVCO

(MHz)
1960 2440 2440 50

BW (kHz) 5.1 237.9 11.3 4.5

Phase

Margin

(degrees)

47.3 35 39.4 48

C1 (nF) 18 0.1 15 6.8

C2 (nF) 100 0.68 150 100

C3 (nF) 0 0 0.82 1.8

C4 (nF) 0 0 0.56 0

VCOcap

(nF)
22 22 22 0.82

R2 (kΩ) 0.82 6.8 0.22 1

R3 (kΩ) 0 0 1.5 2.2

R4 (kΩ) 0 0 2.7 0
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