Line Drawing with the NS32CG16; NS32CG16 **Graphics Note 5**

1.0 INTRODUCTION

The Bresenham algorithm, as described in the "Series 32000® Graphics Note 5" is a common integer algorithm used in many graphics systems for line drawing. However, special instructions of the NS32CG16 processor allow it to take advantage of another faster integer algorithm. This application note describes the algorithm and shows an implementation on the NS32CG16 processor using the SBITS (Set BIT String) and SBITPS (Set BIT Perpendicular String) instructions. Timing for the DRAW_LINE algorithm is given in Tables A, B and C of the Timing Appendix. The timing from the original Bresenham iterative method using the NS32CG16 is given in Table D.

The bit map memory conventions followed in this note are the same as those given in the NS32CG16 Reference Manual and Datasheet, and all lines drawn are monochrome. Series 32000 Graphics Note 5, AN-524, is recommended reading.

2.0 DESCRIPTION

All rasterized lines are formed by sequences of line "slices" which are separated by a unit shift diagonal to the direction of these slices. For example, the line shown in Figure 1 is composed of 7 slices, each slice separated by a unit diagonal shift in the positive direction. Notice that the slices of the line vary in length. The algorithm presented in this note determines the length of each slice, given the slope and the endpoints of the line

Depending on the slope of the line, these slices will extend along the horizontal axis, the vertical axis or the diagonal axis with respect to the image plane (i.e., a printed page or CRT screen). If the data memory is aligned with the image plane so that a positive one unit horizontal (x-axis) move in the image plane corresponds to a one bit move within a byte in the data memory, and so that a positive one unit vertical (y-axis) move in the image plane corresponds to a positive one "warp" (warp = the number pixels along the major axis of the bit map) move within the data memory, then the SBITS and SBITPS instructions can be used to quickly set bits within data memory to form the line slices on the image plane, as explained in section 3.1. For long horizontal lines, the MOVMP (MOVe Multiple Pattern) instruction is more efficient than SBITS. This instruction is discussed in section 3.1 and in the NS32CG16 Reference Manual.

2.1 Derivation of the Bresenham SLICE Algorithm

For the moment, consider only those lines in the X-Y coordinate system starting at the origin (0,0), finishing at an inteNational Semiconductor Application Note 522 Nancy Cossitt July 1988

ger end point (x,y) and lying in the first partial octant, as in Figure 2. (The analysis will be extended for all lines in section 2.2.) The equation for one such line ending at (A,B) is: y = mx,

where

m = B/Ais the slope of the line. Note that because the line lies in the first partial octant, $A > 2B \ge 1$.

Each pixel plotted can be thought of as a unit square area on a Real plane (Figure 3). Assume each pixel square is situated so that the center of the square is the integer address of the pixel, and each pixel address is one unit away from its neighbor. Then let Ai represent the X-coordinate of the pixel, as shown in Figure 3. The value of Y at Ai is:

 $y = (B/A)A_i$

where y is Real.

Since the address of each pixel plotted must have corresponding integer coordinates, the closest integer to y is either the upper bound of y or the lower bound. (Recall that upper and lower bounds refer to the smallest integer greater than or equal to y and the largest integer less than or equal to y respectively.) The original Bresenham algorithm was based on this concept, and had a decision variable within the main loop of the algorithm to decide whether the next y_{i+1} was the previous y_i (lower bound) or $y_i + 1$ (upper bound). For the SLICE algorithm, we are only concerned with when the value changes to $y_i + 1$, and the length of the previous slice up to that point.

© 1995 National Semiconductor Corporation TL/EE/9663 RRD-B30M105/Printed in U. S. A

G

AN-522

Y is incremented when the location of the half point is beyond $\mathsf{A}_{i\!},$ or when the true value of Y at A_{i+1} is greater than $Y_i + \frac{1}{2}$.

FIGURE 3

In order for yi to be incremented along the Y-axis, the true value of real y at $A_i + 1$ must be greater than or equal to the halfway point between y_i and $y_i + 1$ (Figure 3). If we let i increment along the Y-axis, then this half point occurs when:

$$y = 1/2 + y_i$$

Or, because $y_i = i$ when incrementing along the Y-axis,

$$y = (1 + 2i)/2$$

$$x = A(1 + 2i)/2B$$

using x = (1/m)y. The lower bound of this value of x represents the x-coordinate of the pixel square containing the half point.

Letting A_i and $A_{i\,+\,1}$ be two integer values of x where the real value of y is greater than or equal to the half point value y_i + 1/2 (Figure 4), then the run length extends from (A_i + 1, i + 1) to (A_{i+1}, i + 1). The run length can then be calculated as:

$$A_{i+1} = A_{i+1} - A_i - 1$$

for $i = 0, 1, \ldots$,(B-2). Using the equation for x above, we can now better define A_i as:

$$A_i = (A/2B) + (iA/B).$$

This equation has two real-valued divisions which are not suitable for an integer algorithm. However, the equation can be broken down so that it only involves an integer-valued division and its integer remainder, which is more efficient for processing. To do this we must define some intermediary integer values:

$$\begin{split} \textbf{N} &= {}_{2B} | \textbf{A} & \{ \text{Integer residue of A modulo 2B} \} \\ \textbf{T}_{i} &= {}_{2B} | (N+2iR) & \{ \text{Integer residue of } (N+2iR) \\ & \text{modulo 2B} \} \end{split}$$

Note: A|B = B + A * Iower[A/B].

N =

Using the above values we can now define A_i as,

$$A_i = (M + N/2B) + (iQ + iR/B)$$

 $A_i = M + iQ + (N + 2iR)/2B$

Therefore, substituting A_i and $A_{i\,+\,1}$ into the equation for H_{i+1} , the intermediate horizontal lengths are,

 $H_{i+1} = A_{i+1} - A_i - 1$

and,

 $H_{i\,+\,1} = \, \{M\,+\,(i\,+\,1)Q\,+\,\text{lower}[(N\,+\,2(i\,+\,1)R)/2B]\} \,\,-\,$

 ${M + iQ + Iower[(N + 2iR)/2B]} - 1$

 $H_{i+1} = Q + Iower[(N + 2iR)/2B + 2R/2B] - Iower[(N + 2iR)/2B] - 1$

$$lower[(N + 2iR)/2B] - 1$$

 $H_{i+1} = Q - 1 + \text{lower}[(T_i + 2R)/2B]$

Analyzing the term **lower**[$(T_i + 2R)/2B$] it is shown that if T_i + 2R \ge 2B then the term becomes 1, otherwise it becomes 0. This is due to the definition of residue and modulo. The term T_i is defined as:

$$(N + 2iR) - 2B(lower[(N + 2iR)/2B])$$

which means that $0 \leq T_i < 2B.$ The same is true for R:

$$\mathsf{R} = \mathsf{A} - \mathsf{B}(\mathsf{lower}[\mathsf{A}/\mathsf{B}]),$$

so that $0 \le 2R \le 2B$. Therefore,

 $0 \leq T_{j} + 2R \leq 4B$

$$0 \le (T_i + 2R)/2B < 2.$$

The only possible integer values for this term are 0 and 1. The term will equal 0 if $T_i + 2R < 2B$, and it will equal 1 when T_i + 2R \geq 2B, and H_{i+1} will equal Q. The decision variable can now be defined as

testvar = $T_i + 2R - 2B$.

If testvar \geq 0 then the horizontal run length is Q; if testvar < 0 then the run length is Q-1.

Looking again at the definition of T_i, a recursive relationship for the testvar can be formed.

$$\begin{split} T_{i+1} &= (N+2R(i+1))-2B(\textit{lower}[(N+2R(i+1))/2B] \\ T_{i+1} &= (N+2iR+2R)-2B(\textit{lower}[(N+2iR+2R)/2B] \end{split}$$

Since, as shown above, 0 $\,<\,$ (T_{i}\,+\, 2R)/2B $\,<\,$ 2 then low $er[(T_i + 2R)/2B] \le 1$. In fact, if $T_i + 2R \le 2B$ then low $er[(T_i + 2R)/2B] = 0$, and if $T_i + 2R \ge 2B$ then $lower[(T_i)/2B] = 0$ + 2R)/2B] = 1. Therefore, letting $T_0 = N$,

$$T_{i+1} = T_i + 2R$$
 if $(T_i + 2R) < 2B$

 $\mathsf{T}_{i+1}=\mathsf{T}_i+2\mathsf{R}{-}2\mathsf{B}\quad\text{if}\;(\mathsf{T}_i+2\mathsf{R})\geq 2\mathsf{B}.$

This gives the recursive relationship for testvar:

testvar
$$i + 1 = \text{testvar} i + 2R$$

 $H_i = Q - 1$

if testvar
$$_{i}$$
 < 0. And, if testvar $_{i}$ \geq 0:

testvar_{i+1} = testvar_i + 2R-2B
$$H_i = Q.$$

These recursive equations allow the intermediate run lengths to be easily calculated using only a few additions and compare-and-branches.

The initial run length is calculated as follows:

 $H_0 = A_0 = Iower[A/2B] = M + Iower[N/2B] = M.$ The final run length is similarly calculated as:

$$H_f = M - 1$$
 if $N = 0$ else $H_f = M$.

2

Thus, the SLICE algorithm calculates the horizontal run lengths of a line using various parameters based on the first partial octant abscissa and ordinate of the line. The algorithm is efficient because it need only execute its main loop B times, which is a maximum of A/2, if A is normalized for the first partial octant. Compare this with the original Bresenham algorithm which always executes its main loop A times.

2.2 Extended Analysis for All Other Lines

In section 2.1 the SLICE algorithm was derived for lines starting at the origin and contained within the first octant (B < 2A). The algorithm is easily extended to encompass lines in all octants starting and ending at any integer coordinates within the pre-defined bit map. The only modifications necessary for this extension are those relating to the direction of movement and in defining the coordinates A and B.

In order to extend the algorithm to cover all classes of lines, the key parameters used by the algorithm must be normalized to the first partial octant. Those parameters are the abscissa and ordinate displacements and the movement of the bit pointer along the line. The abscissa and ordinate displacements of the line are normalized to the first octant by calculating:

delta $x = x_f - x_s$ and delta $y = y_f - y_s$

which represent the abscissa (delta x) and ordinate (delta y) displacements of the original line. Then, the first octant equivalents of A and B will be:

- $A = maximum \{ |delta x|, |delta y| \}$
- $B' = minimum \{ |delta x|, |delta y| \}$
- $B = minimum \{B', A B'\}$

The next step in normalizing the line for the first octant is to assign the correct value to the movement parameters. A line in the first octant and starting at the origin always has horizontal run lengths in the positive direction along the X (major) axis, and has diagonal movement one unit in the positive X direction and one unit in the positive Y (minor) direction. Since the SLICE algorithm calculates the run lengths independent of direction, variables can easily be defined which contain the direction of movement for each slice and each diagonal step within the different octants.

Lines of different angles starting at the origin have slices of different angles. For example, a line of angle between 22.5 degrees and 45 degrees has run lengths that are diagonal, not horizontal, and the direction of the diagonal step is horizontal, not diagonal. Because of this characteristic, it is convenient to break the 8 octants of the X-Y coordinate system into 16 sections, representing all of the partial octants. Then, re-number these partial octants so that they form new octants as in *Figure 5*. These redefined octants represent

TL/EE/9663-5

Redefined octants for SLICE algorithm. Notice that some of the octants are split. The origin is at the center of the drawing. Setting DELX positive on all lines makes opposite octants equivalent in the table below.

FIGURE 5

each of the eight angle classes of lines. For example, the lines in octants 3 and 7 are composed of diagonal (45 degree) slices in either the positive or negative direction, and have diagonal step in the vertical position. Lines in octants 4 and 8 have run length slices in the vertical direction with diagonal steps in the horizontal direction with respect to the X-Y plane.

In conclusion, the SLICE algorithm calculates successive run lengths in the same manner for lines in each octant. The only difference between the octants is the direction of movement of the bit pointer after each successive run length is calculated. The run lengths and diagonal steps for each octant are given in Table I. *Figure 5* shows the octants used by the SLICE algorithm.

3.0 IMPLEMENTATION OF SLICE USING SBITS, SBITPS AND MOVMP

The NS32CG16 features several powerful graphics instructions. The SLICE algorithm described by this application note is implemented with three of these instructions: SBITS, SBITPS and MOVMP. The SBITS instruction allows a horizontal string of bits to be set, while the SBITPS instruction can set vertical or diagonal strings of bits. The MOVMP instruction, not detailed in this application note, can be used to set long strings of bits faster than SBITS when the length is more than 200 bits in the horizontal direction. The BIGSET.S routine given in the appendix uses this instruction in conjunction with SBITS for long lines. These are very useful instructions for the SLICE run length algorithm, as will be shown in section 3.2.

OCTANT	DELA	DELB	DIAGONAL MOVE	RUN LENGTH		
1 & 5	DELX	DELY	1 + (±WARP)	+ HORZ		
2&6	DELX	DELA- DELY	+ 1	±DIAG		
3&7	DELY	DELA-DELX	±WARP	±DIAG		
4 & 8	DELY	DELX	+ 1	±WARP		

TABLE

If $\mathsf{DELX} < \mathsf{0}$ then the starting and ending coordinates are swapped. This simplifies initialization.

3.1 SBITS and SBITPS Tutorial

SBITS:

SBITS (Set BIT String) sets a string of bits along the horizontal axis of a pre-defined bit map. The instruction sets a string of up to 25 bits in a single execution using four arguments pre-stored in registers R0 through R3.

- R0 = (32 bits) Base address of bit-string destination.
- R1 = (32 bits, signed) Starting bit-offset from R0.
- R2 = (32 bits, unsigned) Run length of the line segment.
- R3 = (32 bits) Address of the string look-up table.

The value of the bit offset is used to calculate the bit number within the byte, assuming that the first bit is bit 0 and the last bit is bit 7. A maximum of 7 for the starting bit number added to a maximum of 25 for the run length requires a total of 32 bits. SBITS calculates the destination address of the first byte of the 32-bit double word to contain the string of set bits by the following:

Destination Byte = Base Address + Offset DIV 8.

Then, the starting bit number within the destination byte is:

Starting Bit = Offset MOD 8.

SBITS instruction then calculates the address for the 32-bit double word within the string look-up table (found in the NS32CG16 manual) which will be OR'ed with the 32-bit double word whose starting byte address is Destination Byte, as calculated above. The table is stored as eight contiguous sections, each containing 32 32-bit double words. Each of the eight sections corresponds to a different value of Starting Bit (Offset MOD 8), which has a possible range of 0 through 7. The 32 double words in each section correspond to each value of the run length (up to 25) added to the starting bit offset.

example:

Register Contents

before	after
R0 = 1000	R0 = 1000
R1 = 235	R1 = 235
R2 = 16	R2 = 16
R3 = \$stab	R3 = \$stab

Destination Address = 1000 + (235 DIV 8) = 1029Starting Bit = 235 MOD 8 = 3

Table Address = \$stab + 4*(16 + (32*3)) = \$stab + 448 bytes

32-bit Mask = 0x0007FFF8

This mask value is OR'ed with the 32-bit double word starting at byte address 1029 decimal. Notice that the mask 0x0007FFF8 leaves the first 3 bits and the last 13 bits alone. Thus, a string of 16 bits is set starting at bit number 3 at address 1029 decimal. The contents of the registers are unaffected by the execution of the SBITS instruction.

Since the SBITS instruction can set up to 25 bits in one execution, the run length in R2 can be compared to 25, and a special subroutine executed if it exceeds 25 bits. The subroutine will set the first 25 bits, then subtract 25 from the run length, and compare this to 25 again. This process is repeated until the run length is less than 25, in which case

the remaining bits are set and the subroutine returns. The DRAW_LINE algorithm implemented in this application note uses this method for strings of bits to be set less than 200. For horizontal lines greater than 200 pixels in length, the BIGSET routine is more efficient, as described below. BIGSET:

DIGSET

The utility program BIGSET.S is used to draw longer lines, more than 200 pixels in length, more efficiently than SBITS. BIGSET.S, which is given in the appendix, uses the MOVMP instruction (MOVe Multiple Pattern) to set long strings of bits. Since MOVMP operates on double-word aligned addresses most efficiently, the string is broken up into a starting string within the first byte, a series of bytes to be set, and an ending string which is the leftover bits to be set within the final byte. The starting and ending strings of bits, if any, are set using the SBITS table with an OR instruction.

SBITPS:

SBITPS (Set BIT Perpendicular String) handles both vertical lines and diagonal lines. This instruction also requires four arguments pre-stored in R0 through R3. R0, R1 and R2 are the Base Address, Starting Bit Offset and Run Length respectively, as for SBITS. R3, however, contains the destination warp.

Note: The Destination warp is the number of bits along the horizontal length of the bit map, or the number of bits between scan lines. It is also referred to as the "pitch" of the bit map. Thus, a vertical one-unit move in the positive direction would require adding the value of the warp to the bit pointer. A diagonal or 45 degree line is drawn when the warp is incremented or decremented by one.

The run length is a 32 bit unsigned magnitude.

example:

(Assume that the bit map is a 904 x 904 pixel grid.)

Register Contents

before	after
R0 = 1000	R0 = 1000
R1 = 235	R1 = 235 + (150*904) = 135,835
R2 = 150	R2 = 0
R3 = +904	R3 = +904

Destination Address = 1029 Starting Bit Number = 3

Run Length = 150

Warp = +904

As in the example for SBITS, the Destination Address is 1029, with Starting Bit Number = 3. Since the warp in this example is \pm 904 and the bit map is 904 x 904 bits, the line is vertical, has a length of 150 pixels and starts at bit number 3 within the byte whose address is 1029 decimal. Unlike the SBITS instruction, the SBITPS alters registers R1 and R2 during execution. R1 is set to the position of the last bit set plus the warp. However, this is convenient for drawing the next slice since R1 has been automatically updated to its proper horizontal position for setting the next bit. The bit offset in R1 need only be incremented by \pm 1 or -1 to point to the exact position of the next bit to be set.

Diagonal lines are drawn when the value contained in R3 is an increment of the bit map's warp.

example:

(Assume that the bit map is a 904 \times 904 pixel grid.)

Register	Contents

betore	atter
R0 = 1000	R0 = 1000
R1 = 235	R1 = 235 + (150*905) = 135,985
R2 = 150	R2 = 0
R3 = +905	R3 = +905

This example draws a diagonal line with positive slope starting at bit position 3 in byte 1029. Notice that the new value of R1 = 135,985 is exactly 150 pixels offset from the value of R1 in the vertical line drawn in the previous example. Adding +1 to the warp in this example caused the bit position to move not only in the positive vertical direction, but also in the positive horizontal direction, forming a diagonal line.

3.2 Implementation of DRAW_LINE and SLICE on the NS32CG16

Both a C version of the DRAW_LINE algorithm and an NS32CG16 assembly version are given in the appendix. The C program was implemented on SYS32/20 which uses the NS32032 processor. An emulation package developed by the Electronic Imaging Group at National was used to emulate the SBITS and SBITPS instructions in C, and also the MOVMP instruction used for lines longer than 200 pixels. The emulation routines, which cover all NS32CG16 instructions not available on other Series 32000 processors, are available as both C functions and Series 32000 assembly subroutines.

The DRAW_LINE program was first written in C using the emulation functions. Once this version was tested and functional, it was translated into Series 32000 code and further optimized for speed. The assembly version uses the Series 32000 assembly subroutines which emulate the SBITS and SBITPS instructions. NS32CG16 executable code was developed by replacing the emulation subroutine calls with the actual NS32CG16 instruction. The functional and optimized code was finally executed on the NS32CG16 processor with the aid of the DBG16 debugger for downloading the code to an NS32CG16 evaluation board. Timing for lines of various slopes is given in the Timing Appendix.

Most of the optimization efforts are concentrated in the main loop of the SLICE algorithm. Since the use of SBITS or SBITPS for the run length depends on the slope of the line, the code is unrolled for the different octants. This minimizes branching within the main loop, and cuts down on overall execution time. Also, the DRAW_LINE takes advantage of the NS32CG16's ability to draw fast horizontal, vertical and diagonal lines by separating these lines out from the actual Bresenham SLICE algorithm. Therefore, time is not wasted for trivial lines on executing the initialization sections and main loop sections of the SLICE algorithm.

Branching within the initialization section is also minimized by unrolling the code for each octant. Recall from section 2.2 that in order to extend the algorithm over all octants, the abscissa and ordinate displacements must be normalized to the first octant and the run length directions must be modified to preserve the slope of the line. Partitioning the program into "octant" modules makes the initialization for each octant less cluttered with compare-and-branches. Table I shows that each octant has a unique value for DELA and DELB (the normalized abscissa and ordinate displacements). Note that at the beginning of the programs, DELX or $x_f - x_s$ is checked for sign, and if negative, the absolute value function is performed and the starting and ending points are exchanged. This is done because each octant module of the SLICE algorithm only cares about the sign of DELY with respect to coordinate (x_s, y_s). DELX is only important when initializing DELA or DELB, and in this case, only the absolute value is needed.

4.0 SYSTEM SET-UP

NS32CG16 Evaluation Board:

- -NS32CG16 with a 30 MHz Clock
- -256KB Static RAM Memory (No Wait States)
- —2 Serial ports
- —MONCG16 Monitor

Host System:

- -SYS32/20 running Unix System V
- -DBG16 Debugger

Software for Benchmarking:

- -START.C Starts timer and calls DRIVER.
- -DRIVER.C Feeds vectors to DRAW_LINE.
- –DRAW_LINE.S Line drawing routine which includes SLICE.
- —BIGSET.S Uses MOVMPi to set longer lines. Called by DRAW_LINE if length > 200.

4.1 Timing

Timing Assumptions:

- 1. No wait states are used in the memory.
- 2. No screen refresh is performed.
- The overhead referred to as the "driver" overhead is the time it takes to create the endpoints for each vector. This is application dependent, and is not included in the Vector/Sec and Pixel/Sec times.
- 4. The overhead referred to as the "line drawing" overhead is the time it takes to set up the registers for the actual line drawing routine. This overhead comes from the DRAW_LINE program only and is included in all times.
- Raw data given in the Timing Appendix for the SBITS, SBITPS and MOVMP is the peak performance for these instructions. These times do not include line drawing overhead or driver overhead.

The timing for this line-drawing application was done so as to give meaningful results for a real graphics application and to allow the reader to calculate additional times if desired. The routines are not optimized for any particular application. All line drawing overhead, such as set-up and branching, is included in the given times for Timing Table A, B and C. The 23 μ s driver overhead of the calling routines is not included in the given times for vectors per second and pixels per second. Calculation of these values was done by subtracting the 23 μ s out of the average time per vectors that the given times are only for the processing of the vectors. They do not include the overhead of DRIVER.C and START.C (refer to these programs in the appendix).

In addition, the DRAW_LINE algorithm is timed for several test vectors at various strategic points in the code so that

```
the reader may verify set-up times or calculate other rele-
vant times. The program DRAW_LINE.S in the appendix
contains markers (e.g., T1, T2...) for each point at which a
particular time was taken. The program was run using a
driver program (DRIVER.C in the appendix) which consists
of several loops which pass test vectors to the
DRAW_LINE routine. A "return" instruction was placed at
the time marker so that the execution time was only mea-
sured up to that marker. These times are given in the Timing
Appendix Table E and include total execution time up to
each of the markers.
```

A millisecond interrupt timer on the NS32CG16 evaluation board was used to time the execution. For each execution, the DRIVER program executed its inner loop over 100 times, and sometimes over 1000 times, so that an accurate reading was obtained from the millisecond timer. The final times were divided by this loop count to obtain a "benchmark" time. This benchmark time was divided by the total number of lines drawn to obtain an average time per vector. The overhead of START.C and DRIVER.C in calling the DRAW_LINE.S routine was not counted in the average time per vector or the average time per pixel calculation. Table E of the Timing Appendix gives the timing for each of the markers and the conditions under which these times were taken.

5.0 CONCLUSION

The timing for the DRAW_LINE algorithm is a good indication of the performance of the NS32CG16 in a real application, something which the datasheet specifications can't always show. The timing clearly shows that the NS32CG16 is well-suited for line-drawing applications. Using the SBITS, SBITPS and the MOVMPi instructions, fast line-drawing is achieved for lines of all slopes and lengths. The NS32CG16 is an ideal processor for taking advantage of the much faster SLICE algorithm.

The SLICE algorithm, which calculates run lengths of line segments to form a complete rasterized line, is much faster than its Bresenham predecessor which calculates the line pixel by pixel. The SLICE algorithm always executes the main loop at least twice as fast as the original Bresenham algorithm, which executes its main loop exactly max{|delx|,|dely|} times for each line.

REFERENCES

J.E. Bresenham, IBM, Research Triangle Park, USA. "Run Length Slice Algorithm for Incremental Lines", **Fundamental Algorithms for Computer Graphics,** Springer-Verlag Berlin Heidelberg 1985.

N.M. Cossitt, National Semiconductor, "Bresenham's Line Algorithm Using the SBIT Instruction", **Series 32000 Graphics Note 5, AN-524**, 1988.

National Semiconductor, NS32CG16 Supplement to the Series 32000 Programmer's Reference Manual, 1988.

Bresenham's SLICE Algorithm:

```
1. INITIALIZE PARAMETERS, MAKE NECESSARY ROTATIONS
```

2. OUTPUT INITIAL RUN LENGTH (H_O) IN PROPER OCTANT DIRECTION

MOVE DIAGONALLY IN APPROPRIATE DIRECTION TO START OF NEXT RUN LENGTH

3. OUTPUT INTERMEDIATE RUN LENGTHS

```
\begin{array}{l} \mbox{COUNT} = \mbox{COUNT} - 1 \\ \mbox{IF COUNT} &\leq 0 \mbox{ GOTO } 4. \\ \mbox{IF TESTVAR} &< 0 \mbox{ H} = \mbox{Q} - 1 \mbox{ AND TESTVAR} = \mbox{TESTVAR} + 2^*\mbox{R} \\ \mbox{ELSE } \mbox{H} = \mbox{Q} \mbox{ AND TESTVAR} = \mbox{TESTVAR} + 2^*\mbox{R} - 2^*\mbox{DELB} \\ \mbox{OUTPUT RUN LENGTH OF LENGTH H IN PROPER DIRECTION} \\ \mbox{MOVE DIAGONALLY IN PROPER DIRECTION} \\ \mbox{GOTO } 3. \end{array}
```

4. OUTPUT FINAL RUN LENGTH OF LENGTH H_F

5. END

```
\begin{split} & \text{INITIALIZED PARAMETERS} \\ & \text{DELA} = \text{MAXIMUM OF } \{|\text{DELX}|, |\text{DELY}|\} \\ & \text{DELB} = \text{MINIMUM OF } \{|\text{DELA}|, \text{DELA-MINIMUM} \{|\text{DELX}|, |\text{DELY}|\}\} \\ & \text{Q} = \text{LOWER}[\text{DELA}/\text{DELB}] \\ & \text{R} = \text{DELA}-\text{DELB*Q} \\ & \text{M} = \text{LOWER}[Q/2] \\ & \text{N} = \text{R} + \text{DELB} (\text{IF Q EVEN}) \\ & \text{N} = \text{R} + \text{DELB} (\text{IF Q ODD}) \\ & \text{H}_{O} = \text{M} (\text{IF DELY} \geq 0 \text{ OR N} <>0) \\ & \text{H}_{O} = \text{M} - 1 (\text{IF DELY} < 0 \text{ OR N} <>0) \\ & \text{H}_{F} = \text{M} (\text{IF DELY} < 0 \text{ OR N} <>0) \\ & \text{H}_{F} = \text{M} - 1 (\text{IF DELY} < 0 \text{ OR N} <>0) \\ & \text{H}_{F} = \text{M} - 1 (\text{IF DELY} < 0 \text{ OR N} <>0) \\ & \text{H}_{F} = \text{M} - 1 (\text{IF DELY} \geq 0 \text{ AND N} = 0) \\ & \text{COUNT} = \text{DELB} \\ & \text{TESTVAR}_{0} = \text{N} + 2^{*}\text{R} - 2^{*}\text{DELB} (\text{IF DELY} < 0) \\ & \text{TESTVAR}_{0} = \text{N} + 2^{*}\text{R} - 2^{*}\text{DELB} - 1 (\text{IF DELY} < 0) \\ \end{split}
```


TIMING APPENDIX

A. PEAK RAW PERFORMANCE AT 15 MHz

Function Horizontal Line (SBITS) Horizontal Line (MOVMP) Vertical Line (SBITPS) Rate* 9 MBits/s 60 MBits/s

Vertical Line (SBITPS) 440 kBits/s
*Raw performance does not include any register set-up, branching or other software set-up overhead.

B. TRIVIAL LINES (Using 1k x 1k Bit Map Grid)

	Pixels/Line	Vectors/Sec	Pixels/Sec	Comments**
Horizontal:	1000	13,361	13,361,838	Uses BIGSET.S with MOVMP.
	100	24,136	2,413,593	Uses SBITS only.
	10	45,687	456,870	Uses SBITS only.
Vertical and	1000	424	424,000	Uses SBITPS.
Diagonal:	100	3,975	397,460	
	10	24.491	244.910	

**Pixels/Sec and Vectors/Sec are measured from start of DRAW_LINE.S only. The 23.128 μs driver overhead was not included in these measurements.

C. ALL LINES (Using the "Star-Burst" Benchmark and the SLICE Algorithm)

Pix/Vector	Vectors/Sec	Pixels/Sec	Total Time*	Comments**
1000	318	318,165	0.8s	250 Lines in Star-Burst
100	2,811	281,118	0.019s	50 Lines in Star-Burst
10	14,549	145,490	0.001s	10 Lines in Star-Burst
Avg. Set	t-up Time Per Line	(Measured fron	n Start of DRAW_	_LINE Only): 37 μs

D. ALL LINES (Using Original BRESENHAM Iterative Method with SBIT and the Star-Burst Benchmark)

Pix/Vector	Vectors/Sec	Pixels/Sec	Total Time*	Comments**
1000	163	162,746	1.5s	250 Lines in Star-Burst
100	1,568	158,332	0.033s	50 Lines in Star-Burst
10	11,547	127,021	0.001s	10 Lines in Star-Burst
Avg. S	et-up Time Per Lin	e (Measured for	Line Drawing Ro	outine Only): 30 µs

The Bresenham program used for the above table can be found in the Series 32000® Graphics Application Note 5.

*Total time is measured from start of execution to finish. It includes all line drawing pre-processing, set-up and branching, and it includes all driver overhead of DRIVER.C and START.C. This time is a good indication of the pages per minute for the complete Star-Burst benchmark. Vectors/Sec and Pixels/Sec are measured from start of DRAW_LINE.S only. The 23.712 µs overhead was not included in these measurements.

**Star-Burst benchmark draws an equal number of lines in each octant. DRIVER.C creates vectors that form the Star-Burst image, passing these vectors to DRAW_LINE.S as they are created. The bit map image can then be downloaded to a printer for a hard copy, as in *Figure 6*.

leasurement Point	Measured Time/Vector*	Test Vector Used	Octant of Test Vector (Refer to <i>Figure 5</i>) And Length of Vector	Comments
T1	23.128 μs	Any Non-Calculated	Any Octant, Any Length	Overhead of entry into DRAW_LINE when not calculating endpoints of line. Application dependent.
	23.712	STAR-BURST	All Octants, 1000 Pixels	Overhead of entry into DRAW_LINE when calculating the STAR-BURST vectors. Application dependent.
T2	40.056	(0,0,0,999)	Vertical, 1000 Pixels/Vector	Average overhead per vertical line to start of line draw instruction (SBITPS).
Т3	41.780	(0,999,0,0)	Vertical, 1000 Pixels/Vector	Average overhead per vertical line with negative slope to start of line draw instruction.
T4	40.884	(0,0,999,0)	Horizontal, 1000 Pix/Vect	Average overhead per horizontal line to start of line draw instruction. (SBITS and BIGSET).
	43.912	(999,0,0,0)	Same	Same as above with negative delta $ imes$ value.
T5	44.532	(0,0,999,999)	Diagonal, 1000 Pix/Vect	Average overhead per diagonal line to start of line draw instruction (SBITPS).
T6	45.356	(0,999,999,0)	Same	Same as above for diagonal line with negative delta \times value.
Τ7	71.164	(0,0,999,10)	Octant 1 1000 Pix/Vect	Average overhead per line to first run length slice of the SLICE algorithm for octant 1.
Т8	87.476 75.572 75.568	(0,0,999,10) (0,0,99,10) (0,0,9,2)	Octant 1 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel line through first run length of the SLICE algorithm. Dependent on the vector length.
Т9	100.348µs 88.444 88.436	(0,0,999,10) (0,0,99,10) (0,0,9,2)	Octant 1 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel line to start of main loop of SLICE algorithm. Dependent on the vector length.
T10	71.856	(0,0,9,8)	Octant 2 10 Pix/Vect	Average overhead per line to first run length. Not dependent on vector length.
T11	79.632 80.040 84.180	(0,0,999,800) (0,0,99,80) (0,0,9,8)	Octant 2 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel lin through first run length of the SLICE algorithm. Dependent on the vector length.
T12	89.060 89.476 105.376	(0,0,999,800) (0,0,99,80) (0,0,9,8)	Octant 2 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel line to start of main loop of SLICE algorithm. Dependent on the vector length.
T13	73.024	(500,0,700,999)	Octant 3 1000 Pix/Vect	Average overhead per line to first run length. No dependent on the vector length.
T14	80.736 80.872 80.116	(500,0,700,999) (50,0,70,99) (5,0,7,9)	Octant 3 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel lin through first run length of the SLICE algorithm. Dependent on the vector length.
T15	89.888 90.020 89.268	(500,0,700,999) (50,0,70,99) (5,0,7,9)	Octant 3 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel lin to start of main loop of SLICE algorithm. Dependent on the vector length.
T16	73.712	(10,0,990,999)	Octant 4 1000 Pix/Vect	Average overhead per line to first run length. No dependent on the vector length.
T17	137.532 81.148 78.256	(10,0,999,999) (10,0,90,99) (2,0,8,9)	Octant 4 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel lir through first run length of the SLICE algorithm. Dependent on the vector length.
T18	147.236 90.856 87.956	(10,0,999,999) (10,0,90,99) (2,0,8,9)	Octant 4 1000 Pix/Vect 100 Pix/Vect 10 Pix/Vect	Average overhead per 1000, 100 and 10 pixel lir to start of main loop of SLICE algorithm. Dependent on the vector length.
*Each time was DRAW_LINE ro 1k x 1k bit map.	87.956 measured from star putine is T1 = 23.712	(2,0,8,9) t of benchmark execution t μ s for the STAR-BURST be	10 Pix/Vect to the Tx marker in the DRAW_LINE enchmark. All programs used for timing	Dependent on the vector length. ES program. Thus, the overhead of the calling routine to the g are included in the Appendix. All times given above are for a

```
/* This program draws a line in a defined bit map using Bresenham's */ /* SLICE algorithm. */
#include<stdio.h>
#define xbytes 250
#define warp 2000
#define maxy 1999
unsigned char bit_map[xbytes*maxy];
extern unsigned char sbitstab[];
draw_line(xs,ys,xt,yt)
int
           xs,ys,xt,yt;
(
                         bit,i,j,delx,dely,dela,delb,
hf,h,hØ,testvar,q,r,m,
n,count,xinc,yinc;
            int
            delx=xt-xs;
dely=yt-ys;
            if (xt-xs<Ø) {
    xs=xt;
    ys=yt;
    delx=abs(delx);
    dely= -dely;
}</pre>
           sbitps(bit_map,bit,abs(dely),-warp);
return;
                         }
            )
if (dely==Ø) {
    sbits(bit_map,bit,delx,sbitstab);
    return;
            }
if (abs(delx)==abs(dely)){
    if(delx*dely>=Ø){
        sbitps(bit_map,bit,abs(dely),warp+1);
        return;
}
                          )
else (
                                     sbitps(bit_map,bit,delx,-warp+1);
return;
                          }
if (abs(delx)>abs(dely)){
            if (abs(dely)<(delx-abs(dely)))
{</pre>
                         dela=delx;
delb=abs(dely);
xinc=1;
if (dely>=Ø)
yinc=warp;
else
                          else
                                      yinc= -warp;
                         q=dela/delb;
```

TL/EE/9663-7

```
r=dela-delb*q;
m=q/2;
if (q-2*(q/2)==Ø)
n=r;
               else
                               n=r+delb;
               if ((dely>=Ø) | | (n!=Ø))
hØ=m;
               else
                               hø≃m-1;
               if ((dely < \emptyset) | | (n! = \emptyset))
hf=m;
               else
                               hf=m-1;
               count=delb;
               if(dely>=Ø)
testvar=n+2*r-2*delb;
               else
               else
testvar=n+2*r-2*delb-1;
sbits(bit_map,bit,hØ+1,sbitstab);
bit=bit+hØ+yinc+xinc;
               for(i=count-1; i>Ø; i--) {
    if (testvar<Ø) {
        h=q-1;
        testvar+=2*r;
    }
}</pre>
                               }
else {
    h=q;
    testvar+=2*r-2*delb;
    ``` b+1.sbitst;
 }
sbits(bit_map,bit,h+1,sbitstab);
bit=bit+h+yinc+xinc;
)
sbits(bit_map,bit,hf,sbitstab);
return;
}
else{
 dela=abs(delx);
delb=dela-abs(dely);
xinc=1;
if(dely>=Ø)
yinc=warp;
else
vinc= -warp;
 else
yinc= -warp;
q=dela/delb;
r=dela-delb*q;
m=q/2;
if (q-2*(q/2)==Ø)
n=r;
else
 else
 else

 n=r+delb;

 if ((dely>=Ø) | | (n!=Ø))

 hØ=m;

 else
 else
 hØ=m−1;
 if ((dely<Ø)||(n!=Ø))
hf=m;
 else
 hf=m-1;
```

TL/EE/9663-8

count=delb; if(dely>=Ø)
 testvar=n+2\*r-2\*delb; testvar=n+2\*r-2\*delb-1; else testvar=n+2\*r-2\*delb-1; sbitps(bit\_map,bit,hØ+1,yinc+1); bit=bit+hØ+hØ\*yinc+1; for(i=count-1;i>Ø;i--) {
 if (testvar<Ø)(
 h=q-1;
 testvar+=2\*r;</pre> }
sbitps(bit\_map,bit,h+1,yinc+1);
bit=bit+h+yinc\*h+1; }
sbitps(bit\_map,bit,hf+1,yinc+1);
return; } ) else{ q=dela/delb; r=dela-delb\*q; m=q/2; if (q-2\*(q/2)==Ø) n=r; else n=r+delb; else n=r+delb; if ((dely>=Ø)||(n!=Ø)) hØ=m; else else hø=m−1; else hf=m-1; count=delb; if(dely>=Ø)
 testvar=n+2\*r-2\*delb;
else
 tostvar=n:2\*r 2\*delb. else testvar=n+2\*r-2\*delb-1; sbitps(bit\_map,bit,hg+1,xinc); bit=bit+yinc+(1+hØ)\*xinc; for(i=count-1;i>Ø;i--) ( if (testvar<Ø){
 h=q-1;
 testvar+=2\*r;</pre> } else ( TL/EE/9663-9

```
h=q;
testvar+=2*r-2*delb;
 }
sbitps(bit_map,bit,h+1,xinc);
bit=bit+yinc+xinc*(1+h);
)
sbitps(bit_map,bit,hf+1,xinc);
return;
 }
else{
 dela=abs(dely);
delb=dela-abs(delx);
yinc=1;
if(dely>Ø)
xinc=warp;
 else
 xinc= -warp;
 q=dela/delb;
r=dela-delb*q;
m=q/2;
if (q-2*(q/2)==Ø)
n=r;
else
 else
 hø=m−1;
 else
 hf=m-1;
count=delb;
 if(dely>=ø)
 testvar=n+2*r-2*delb;
 else
 else
testvar=n+2*r-2*delb-1;
sbitps(bit map,bit,hØ+1,xinc+1);
bit=bit+hØ+(1+hØ)*xinc;
for(i=count-1;i>Ø;i--) {
 if (testvar<Ø)(
h=q-1;
testvar+=2*r;
 } else (
 h=q;
 testvar+=2*r-2*delb;
 '** h+1,xinc+
 }
sbitps(bit_map,bit,h+1,xinc+1);
bit=bit+h+xinc*(1+h);
 }
sbitps(bit_map,bit,hf,xinc+1);
return;
 }
}
 TL/EE/9663-10
```

<pre>.comm bit map,495 .set WARP,2000 .globl draw line .globl _sbitstab .align 4 draw_line: enter [r3,r4,rf movd 16(fp),r5 movd 20(fp),r6 movd 20(fp),r6 movd 20(fp),r7 subd r5,r4 movd 20(fp),r7 subd r5,r4 movd 20(fp),r7 subd r7,r6 .vERT: movd 20(fp),r7 absd r4,r4 .vERT: movd 20(fp),r7 absd r4,r4 .vERT: movd 77,r1 muld SWARP,r1 addd r5,r1 cmpqd \$(0),r4 bft</pre>		
<pre>draw_line:</pre>		
<pre>enter [r3,r4,rf</pre>		
<pre>movd l6(fp),r: movd 8(fp),r: subd r5,r4 movd 20(fp),r: subd r5,r4 movd 12(fp),r: subd r7,r6 cmpqd \$(Ø),r4 ble .VERT movd 12(fp),r: movd 12(fp),r: abd r4,r4 negd r6,r6 .VERT: movd r7,r1 movd r6,r2 movd \$(Ø),r6 bqt .VERG addr bit map, movd \$(A),r4,r1 ret \$(Ø) .VEG: # T2 sbitps exit [r3,r4,r1 ret \$(Ø) movd \$(-WARP), # T3 sbitps exit [r3,r4,r1 ret \$(Ø) .HORZ: cmpqd \$(Ø),r6 bne .DIAG addr bit map, movd \$(-WARP), # T3 sbitps exit [r3,r4,r1 ret \$(Ø) .HORZ: cmpqd \$(Ø),r6 bne .DIAG addr bit map, movd \$(-WARP), # T3</pre>		
<pre>UPE Constant of Constant</pre>		
<pre>Neggt Pt, Ft NVERT: movd r7, F1 movd r7, r1 addd r5, r1 cmpqd \$(\$), r4 bne .HORZ cmpqd \$(\$), r6 bqt .VNEG addr bit map, movd r6, r2 movd \$(A, r7 tret \$(\$) .VNEC: addr bit map, movd r6, r2 movd r6, r2 .align 4 .VNEC: addr bit map, movd \$(\$), r6 bne .DIAG addr bitstaf * T3 * T3 * T3 * T4 * T5 * C, T3 * C, T3 * C, T3 * C, T3 * C, T3 * C, T4, F1 * C, T4 * C, T4, F1 * C, T4, F1 * C, T4 * C, T4, F1 * C, T4 * C, T4</pre>		
<pre>cmpqd \$(Ø),r4 bne .HORZ cmpqd \$(Ø),r6 bgt .VMEG addr bit map, movd \$(A),r6 rf,r2 # T2 # T2 # T2 # T2 # T2 # T3 # T3 # T3 # T3 # T3 # T3 # T3 # T3</pre>		
# T2 Bitps exit [r3,r4,rf ret $\xi(\beta)$ .VNEG: addr bit map, movd r6,r2 movd r6,r2 # T3 Sbitps exit [r3,r4,rf ret $\xi(\beta)$ .TAS # T3 Sbitps exit [r3,r4,rf ret $\xi(\beta)$ .HORZ: Cmpqd $\xi(\beta),r6$ bne .DIAG addr bit map, movd r4,r2 addrsbitstaf # T4 Sbits bfc ok cmpd $\xi 2 \beta \beta, r2$ blt bigsl	is neg or sbitps of line	
<pre>.vNEG: addr bit_map, movd r6,r2 absd r2,r2 movd \$(-WARP), # T3 sbitps exit [r3,r4,rf ret \$(Ø) .HORZ: cmpqd \$(Ø),r6 bne .DIAG addr bit Mag addr _bit Mag addr _bitstak # T4 sbits bfc ok cmpd \$2ØØ,r2 blt bics1</pre>		
<pre># T3 sbitps exit [r3,r4,rf ret \$(Ø) .HORZ: cmpqd \$(Ø),r6 bne .DIAG addr bitmap, movd r4,r2 addr _sbitstat # T4 sbits bfc ok cmpd \$2ØØ,r2 blt bigs1</pre>	oitps of line	
.HORZ: cmpqd \$(Ø),r6 bne .DIAG addr bit map, movd T4,r2 addr _sbitstal # T4 sbits bfc ok cmpd \$2ØØ,r2 blt bigsl		
# T4 bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits bits		
# T4 sbits bfc ok cmpd \$2ØØ,r2 blt bigsl	oits	
addr 25,r2	n 25, skip it	
align 4 alp1: sbits addd r2,r1		TL/EE/

subd r cmpd r blt a .align 4 movd r sbits exit ret .align 4 r2,r4 r2,r4 alp1 4 r4,r2 [r3,r4,r5,r6,r7] \$(Ø) bigset [r3,r4,r5,r6,r7] \$(Ø) bigs1: ok: .DIAG: r6,r5 r5,r4 .SLOPELT1 \$(Ø),r6 .DNEG bit\_map,rØ r4,r2 \$WARP + 1,r3 absd cmpd bne # r5=|dely|
# |dely|=delx? bne cmpqd bgt addr movd movd # dely>Ø? # set reg's for sbitps
# r2=delx=length
# r3=warp+1 for diag # draw line [r3,r4,r5,r6,r7] \$(∅) # T5 sbitps exit ret .align 4 .DNEG: addr movd movd --- ۲ # draw line [r3,r4,r5,r6,r7] \$(Ø) # T6 # slope less than 1
# |dely|>delx? r5,r4 .SLOPEGT1 r4,r2 r5,r2 r5,r2 .OCTANT2 \$(Ø),r6 .NEGWARP WARP,-4(fp) .INIT1 # r2=delx
# delx-|dely|
# |dely|>delx-|dely|?
# if no, start octant1 else octant2
# dely>@? # pos slope then warp=positive # warp=negative for neg slope # calculate parameters # delx=dela |dely|=delb # dela/delb=q # calc m # m=q/2 # calc cr # delb\*q # r=dela-delb\*q # set r2 = r # is r3 odd? # yes, n = r # n=r+delb addr .INIT1: -WARP,-4(fp) movd quow movd ashd movd subd movd tbitb bfc addd .align 4 r4,r3 r5,r3 r3,rø \$-1,rø r3,r2 r5,r2 r5,r2 r2,r4 r4,r2 \$Ø,r3 .INIT2 r5,r2 .INIT2: r2,r7 r3,tos rØ,r2 # pop n # push g on stack # r2=m=hø movd movd movd TL/EE/9663-12

	movd cmpgd	rø,-8(fp) \$(ø),r7	# mem=m=hpartb # $n=\emptyset$ ?	
	bne cmpqd	.INIT3 \$(Ø),r6	# dely>0?	
	blt addqd	.INIT4 \$-1,r2	# hØ=m−1	
INIT4:	or subd	.1N1T3 \$18(fp)	<pre># hpartb=m-1</pre>	
INIT3:	addqd	\$1,r2	# takes care of dashes	
	addr addr	_bit_map,rø _sbitstab,r3	# set reg's for sbits # hØ=r2 bit=r1	
Т7	sbits bfc	.2DONE	# set bits if less than 25	
	blt movd movd	BIGSET1 r5,tos r2,r5		
2DRAW2	mova 5: subd	\$25,F2 r2,r5		
	sbits addd	r2,r1		
	cmpd blt	r2,r5 .2DRAW25		
	movd movd	r5,r2 tos,r5		
IGSET1	br	.2DONE		
2DONE:	bsr	bigset		
Т8	addd	r2,r1	<pre># bit=bit+hØ+1 # bit=bit+bØ+14uarp</pre>	
	addd addd movd	-4(IP),rl r4,r4 r5.r3	# pit=plt+nØ+i+warp # 2*r # save delb	
	addd	r5,r5 r4,r7	# delb*2 # n=n+2*r	
	subd cmpqd	r5,r7 \$(Ø),r6	<pre># testvar=n+2*r+delb*2 # dely&gt;Ø</pre>	
TNTME	blt addqd	.INIT5 \$-1,r7	# testvar-1	
INIT5:	movd addqd movd	tos,r2 \$1,r2 r3,tos	<pre># r2=g=h=run length # smoothes out line # push delb=count # cot reals for objer</pre>	
	addr	bit_map,rø t(fp)_r6	# set reg's for spits	
	addqd cmpqd	\$-1,tos \$Ø,Ø(sp)	# count=count-1 # count=0?	
MAINLO	bge OP:	LASTRUN	# Bresenham slice algorithm	
Т9	cmpqd	\$(Ø),r7	<pre># testvar&gt;Ø?</pre>	
	addqd addd	.CASE2 \$-1,r2 r4,r7	# h=q−1 # testvar=testvar+2*r	
	bfc cmpd	.3DRAWLAST \$200,r2	# set bits if less than 25	
	movd	r2,tos		
				TL/EE/9663-13

	movd movd movd	r5,tos r2,r5 \$25,r2		
.3DRAW2	5: subd	r2,r5		
	sbits addd cmpd blt movd	r2,r1 r2,r5 .3DRAW25 r5,r2		
	addd movd movd br	r2,r1 tos,r5 tos,r2 .3DONE		
BIGSET3	: bsr	bigset		
.3DRAWL	AST: addd	r2,r1	# update bit	
. 3 DONE :	addd addd addqd cmpqd blt	r6,r1 \$1,r2 \$(-1),tos \$(Ø),Ø(sp) .MAINLOOP	<pre># bit=bit+warp+h+1 # exit h # count=count-1 # count=Ø?</pre>	
. LASTRU	N:	*		
	cmpqd movd	\$(Ø),tos ~8(fp),r2	<pre># pop stack # hpartb=last run length</pre>	
400340	bfc cmpd blt movd movd movd	.4DONE \$2ØØ,r2 BIGSET4 r2,tos r5,tos r2,r5 \$25,r2	# set bits if less than 25	
.4DRAW2	subd	r2,r5		
	addd cmpd blt movd sbits	r2,r1 r2,r5 .4DRAW25 r5,r2		
BIGSET4	addd movd movd br	r2,r1 tos,r5 tos,r2 .4DONE		
. 4 DONE:	bsr	bigset		
CASES	exit ret .align 4	[r3,r4,r5,r6,r7 \$(Ø) 4	7]	
.CABE2:	addd	r4,r7	<pre># testvar=testvar+2*r # testvar=testvar+2*r</pre>	
	sbits bfc cmpd blt movd movd movd movd	.5DRAWLAST \$2ØØ,r2 BIGSET5 r2,tos r5,tos r2,r5 \$25,r2	# SET BITS IF LESS THAN 25	
				TL/EE/9663-14

<pre>.5DRAW25: subd r2,r5 addd r2,r1 cmpd r2,r5 blt .5DRAW25 blt .5DRAW25 movd r5,r2 sbits addd r2,r1 movd tos,r5 movd tos,r5 br .5DONE BIGSET5: bsr bigset .5DRAWLAST: addd r2,r1</pre>	
addd r2,r1 cmpd r2,r5 blt .5DRAw25 movd r5,r2 sbits addd r2,r1 movd tos,r5 br .5DONE BIGSET5: br .5DONE BIGSET5: br bigset .5DRAWLAST: addd r2,r1 # update bit .5DRAWLAST: addd r6,r1 # bit=bit+warp+h+1 addd r6,r1 # bit=bit+warp+h+1 addd r6,r1 # bit=bit+warp+h+1 addd s(-1),tos # update count cmppd \$(Ø),Ø(sp) # count=Ø? bit while while on the one of the	
<pre>sbits add r2,r1 movd tos,r5 movd tos,r5 br .5DONE bs bigset .5DRAWLAST: add r2,r1  # update bit .5DONE: addd r6,r1  # bit=bit+warp+h+1 adddg \$(-1),tos  # update count cmpqd \$(Ø), Ø(sp)  # count=Ø? bit WALMOOD  # count=Ø?</pre>	
BIGSET5: bsr bigset 5DRAWLAST: addd r2,r1 # update bit 5DONE: addd r6,r1 # bit=bit+warp+h+1 adddd \$(-1),tos # update count cmpqd \$(0),0(sp) # count=0? bit dw1/0(sp) # count=0?	
.5DRAWLAST: add r2,r1 # update bit .5DONE: addd r6,r1 # bit=bit+warp+h+1 addgd \$(-1),tos # update count cmpgd \$(Ø),Ø(sp) # count=Ø? bit Wath(cop)	
5DONE: addd r6,r1 # bit=bit+warp+h+1 addgd $(-1)$ ,tos # update count cmpgd $(\emptyset), \emptyset$ (sp) # count= $\emptyset$ ? b)t MatNIGOD	
$\begin{array}{rcl} \text{mainfor} \\ \text{cmpgd} & \S(\emptyset), \text{tos} & \# \text{ pop stack} \\ \text{movd} & -\$(fp), r2 & \# \text{ hpartb=last run length} \end{array}$	
spits bfc .6DONE # set bits if less than 25 bsr bigset	
6DONE: exit [r3,r4,r5,r6,r7] ret \$(Ø)	
.align 4 CCTANT2: # draw line in octant 2 cmpqd $(\emptyset), r_{6}$ # dely> $\emptyset$ ?	
bgt .2NEGWARP addr WARP,-4(fp) # pos slope then warp=positive br .2INIT1	
ZNEWARF: addr -WARP,-4(fp) # warp=negative for neg slope 2INITI: # # calculate parameters movd r4,r3 # dela=delx	
movd r2,r5 # delb=delx- dely  quow r5,r3 # dela/delb=q movd r3,r $ \mu$ # dela/delb=q	
ashd $-1, r \neq m=q/2$ movd r3, r2 # calc r	
mulw $r5, r2$ # delb*g subd $r2, r4$ # r=dela-delb*g movd $r4$ $r2$ # nuch r on stack	
tbitb \$\$,r3 bfc .21NHT2 # then n=r	
addd r5,r2 # n=r+delb .align 4 2TNTTD:	
movd r2,r7 # pop n movd r3,tos # push q on stack	
movd $r\emptyset, r2$ # $r2=m=h\emptyset$ addqd \$1, r2 # set one extra bit for smoothness movd $r\emptyset, -8(fp)$ # mem=m=hpartb cmpqd $\$(\emptyset), r7$ # $n=\emptyset$ ?	
bne .2INIT3 cmpqd \$(Ø),r6 # dely>Ø?	
blt .21NIT4 subd \$1,r2 # hØ=m-1 br .21NIT3	
21NIT4: subd \$1,-8(fp)	
TL/EE/	9663-15

	addr movd addgd	_bit_map,rø -4(fp),r3 \$1.r3	<pre># set reg's for sbits # warp=r3 hØ=r2 bit=r1 # octant 2 peeds diag rung</pre>	
† T1ø	sbitps	<i>\</i> 1,13	# draw first run length	
/ T11	addqd	\$1,r1	# update bit in x direction	
	subd addd	r3,r1 r4,r4	# sbitps adds extra warp # 2*r	
	movd addqd	tos,r2 \$1,r2	<pre># q=h=next run length # set extra bit for smoothness</pre>	
	movd addd	r5,tos r5,r5	<pre># push delb=count # delb*2</pre>	
	addd subd	r4,r7 r5,r7	<pre># n=n+2*r # testvar=n+2*r+delb*2</pre>	
	cmpqd blt	\$(Ø),r6 .2INIT5	# dely>ø	
2INIT5	subd	\$1,r7	<pre># testvar-1</pre>	
	cmpqd	\$1,tos \$Ø,Ø(sp)	<pre># count=count-1 # count=Ø?</pre>	
2MAINLO	oop:	.2LASTRUN	<pre># Bresenham slice algorithm</pre>	
112	cmpqd	\$(Ø),r7	<pre># testvar&gt;Ø?</pre>	
	subd	\$1,r2	# h=q-1	
	movd	r2,tos	<pre># Lestvar=testvar+2*r # preserve h # drag line of legath h</pre>	
	movd	tos,r2	# unaw diag file of fength h # renew h	
	subd	r3,r1	# spits adds one warp extra	
	subd cmpgd	\$1,tos \$0,0(sp)	# count=count-1 # count=0	
	blt .align 4	2MAINLOOP		
2LASTRU	UN: cmpqd	\$(Ø),tos	# pop stack	
	movd sbitps	-8(fp),r2	<pre># hpartb=last run length # all other reg's set up</pre>	
	exit ret	[r3,r4,r5,r6,r7 \$(Ø)	] ]	
2CASE2:	.align 4			
	addd subd	r4,r7 r5,r7	<pre># testvar=testvar+2*r # testvar=testvar+2*r-2*delb</pre>	
	mova sbitps	r2,tos	# preserve h # draw line of length h=q	
	addqd	tos,r2 \$1,r1	# renew h # update bit in x direction	
	subd	\$(1),tos	# sbitps adds one warp extra # update_count	
	blt	.2MAINLOOP	<pre># count=p?</pre>	
	ampaa	<i>v</i> ( <i>p</i> ), cos	# bp stack	
	cmpqa movd shitps	-8(fp),r2		
	cmpqd movd sbitps exit ret	-8(fp),r2 [r3,r4,r5,r6,r7	all other reg's set up ]	
SLOPEGT	cmpqd movd sbitps exit ret .align 4	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø)	# all other reg's set up ] # coordinates are retated for these lines	
SLOPEGT	cmpqd movd sbitps exit ret .align 4 Cl: movd subd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4.r2	<pre># npictorrads fun fengen # all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # lde v1-dely</pre>	
LOPEGI	cmpqd movd sbitps exit ret .align 4 fl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TI /EE (0660, 16
3LOPEGT	cmpqd movd sbitps exit ret .align 4 T1: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2 r4,r2	<pre># full other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely-delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
3LOPEGT	cmpdd movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # [delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGT	cmpdd movd sbitps exit ret .align 4 fl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGT	cmpda movd sbitps exit ret .align 4 'l: movd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGT	cmpda movd sbitps exit ret .align 4 '1: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  #  dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
LOPEGT	cmpga movd sbitps exit ret .align 4 Cl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # [delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGT	cmpga movd sbitps exit ret .align 4 fl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # [delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	cmpga movd sbitps exit ret .align 4 Cl: subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely-delx # [delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	cmpga movd sbitps exit ret .align 4 Cl: movd subd cmpd	-8(Ip),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely-delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
5LOPEGT	cmpga movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(Ip),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely-delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	cmpga movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up  # coordinates are rotated for these lines # r2= dely  # [dely-delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	cmpga movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	cmpga movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	Cmpqd movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up ] # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGT	Cmpgg movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up } # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16
SLOPEGI	Cmpqd movd sbitps exit ret .align 4 rl: movd subd cmpd	-8(fp),r2 [r3,r4,r5,r6,r7 \$(Ø) r5,r2 r4,r2 r4,r2	<pre># all other reg's set up } # coordinates are rotated for these lines # r2= dely  # [dely -delx # delx&gt; dely -delx?</pre>	TL/EE/9663-16

	bat	200773172	# if no start octant1 else octant2	
	cmpqd bat	\$(Ø),r6 .3NEGWARP	# dely>Ø?	
	addr br	WARP,-4(fp) .3INIT1	<pre># pos slope then warp=positive</pre>	
3NEGWA	RP: addr	-WARP,-4(fp)	# warp=negative for neg slope	
JINITI	movd	r5,r3	# dela=[dely]	
	movd	r4,r5 r3.r4	# delb=delx # dela in r4	
	quow	r5,r3	# dela/delb=q	
	movd ashd	r3,rØ S-1.rØ	# calc m # m=q/2	
	movd	r3,r2	# calc r	
	mulw	r5,r2 r2 r4	# delb*g # r=dela-delb*g	
	movd	r4,r2	# push r on stack	
	tbitb	\$Ø,r3 3TNTT2	# then n=r	
	addd	r5,r2	# n=r+delb	
3INIT2	.align	4		
	movd	r2,r7	# pop n	
	movd	rø,r2	# $r2=m=h\beta$	
	addqd	\$1, r2	# set one extra bit for smoothness # mem=m=bnarth	
	cmpqd	\$(Ø),r7	# $m=\emptyset$ ?	
	bne	.3INIT3	# delv>02	
	blt	.3INIT4	# dely/p.	
	subd br	\$1,r2 .3INIT3	# hØ=m-1	
3INIT4	: subd	\$18(fp)	# hpartb=m-1	
ЗІМІТЗ	: addr	hit map rø	# set regis for shits	
T13	movd	=4(fp),r3	# warp=r3 h $\beta$ =r2 bit=r1	
T14	sbitps		# draw first run length	
	addqd	\$1,r1	# update bit in x direction	
	addd movd	r4,r4 tos.r2	# 2*r # g=h=next run length	
	addqd	\$1,r2	# set extra bit for smoothness	
	movd addd	r5,tos r5.r5	# push delb=count # delb*2	
	addd	r4,r7	# n=n+2*r	
	cmpad	r5,r/ \$(0).r6	# testvar=n+2*r+delb*2 # delv>Ø	
	blt	3ÍNÍT5		
3INIT5	suba	\$1,17	# testvar-1	
	subd	\$1,tos \$0 0(sp)	# count=count=1 # count=02	
	bge	JLASTRUN		
3MAINL T15	.00P:		# Bresenham slice algorithm	
	cmpqd ble	\$(Ø),r7 .3CASE2	# testvar>Ø?	
	subd	\$1,r2	# h=q-1	
	addd	r4,r7 r2.toe	# testvar=testvar+2*r # preserve b	
	sbitps	12,005	# draw vert line of length h	
	movd	tos,r2	# renew h	TL/FE/9663-17
				12/22/0000-17

a a s c b	ddqd ddd subd mpqd olt	\$1,r1 # \$1,r2 # \$1,tos # \$Ø,Ø(sp) # .3MAINLOOP	<pre>update bit in x direction exit h to q count=count-1 count=Ø?</pre>	
.3LASTRUN c m	align 4 s mpqd novd	\$(Ø),tos -8(fp),r2	pop stack hpartb=last run length	
s e r	sbitps exit ret align 4	[r3,r4,r5,r6,r7] \$(Ø)	all other reg's set up	
.3CASE2: a s	ddd subd	r4,r7 r5,r7 r2.tos	testvar=testvar+2*r testvar=testvar+2*r-2*delb preserve h	
s n a	bitps novd ddqd	tos,r2 \$1,r1	draw line of length h=q renew h update bit in x direction	
c d C	mpqd mpqd mpqd	\$Ø,Ø(SP) .3MAINLOOP \$(Ø),tos	count=#?	
n s e r	sbitps exit ret	-8(1p),r2 [r3,r4,r5,r6,r7] \$(Ø)	all other reg's set up	
.20CTANT2	align 4 2: cmpqd ogt	\$(Ø),r6 .4NEGWARP	draw line in octant 2 dely>Ø?	
a b .4NEGWARF	addr or e: addr	WARP,-4(fp) .4INIT1 -WARP,-4(fp)	f pos slope then warp=positive	
.4INIT1: m m m	novd novd novd novd	r5,r3 r5,r4 r2,r5 r5,r3	; calculate parameters dela-delx dela into r4 delb-delx- dely  delb-delb=c	
n a m n	novd Ishd Novd Nulw	r3,rØ \$(-1),rØ r3,r2 r5,r2	; calc'm ; m=q/2 ; calc r ; delb*q	
π t a	novd bitb ofc addd	r4,r2 \$Ø,r3 .4INIT2 r5,r2	<pre># push round # push round # then n=r # n=r+delb</pre>	
.4INIT2:	align 4	x2 x7		
n n a n	novd novd nddgd novd	r3,tos rØ,r2 \$1,r2 rØ,-8(fp)	push g on stack r2=m=hØ set one extra bit for smoothness mem=m=hpartb	
c b b	cmpqd one cmpqd olt	\$(Ø),r7 .4INIT3 \$(Ø),r6 .4INIT4	f π=∅? f dely>∅?	
s t .4INIT4:	subd or subd 9	\$1,r2 .4INIT3 \$18(fp)	≠ hØ=m-1 # hpartb=m-1	
.4INIT3:		, -, -, -, -, -, -, -, -, -, -, -, -, -,		TL/EE/9663-18

	addr	_bit_map,rø	<pre># set reg's for sbits # warn=r3 b@=r2 bit=r1</pre>	
116	addqd	\$1,r3	# walp-13 hp-12 blt-11 # octant 2 needs diag runs	
T17	sbitps		# draw first run length	
	subd addd	\$1,r1 r4.r4	# update bit # 2*r	
	movd addqd	tos,r2 \$1,r2	<pre># q=h=next run length # set extra bit for smoothness</pre>	
	movđ addd	r5,tos r5,r5	<pre># push delb=count # delb*2</pre>	
	addd subd	r4,r7 r5,r7	<pre># n=n+2*r # testvar=n+2*r+delb*2</pre>	
	cmpqd blt	\$(Ø),r6 .4INIT5	# dely>Ø	
4INIT5	subd :	\$1,r7	# testvar-1	
	subd cmpqd	\$1,tos \$Ø,Ø(sp)	<pre># count=count-1 # count=Ø?</pre>	
4MAINLO	bge DOP:	.4LASTRUN	# Bresenham slice algorithm	
T18	cmpqd	\$(Ø),r7	<pre># testvar&gt;Ø?</pre>	
	subd	\$1,r2	# h=q-1	
	movd	r2,tos	<pre># testvar=testvar+2*r # preserve h # diver diver the h # diver the h # diver diver the h # divert the h # diver the h #</pre>	
	movd	tos,r2	# chaw diag line of tength h # renew h	
	addd	\$1,r2	# exit h to q	
	cmpqd	\$Ø,Ø(sp)	# count=Ø?	
4LASTRI	.align 4			
	cmpqd movd	\$(Ø),tos -8(fp),r2	# pop stack # hpartb=last run length	
	addqd sbitps	\$1,r2	# all other reg's set up	
	exit ret	[r3,r4,r5,r6,r \$(Ø)	7]	
4CASE2	.align 4 :			
	addd subd	r4,r7 r5,r7	<pre># testvar=testvar+2*r # testvar=testvar+2*r-2*delb</pre>	
	sbitps	F2, COS	# preserve h # draw line of length h=q	
	subd	\$1,r1	# sbitps adds one warp extra	
	cmpqd	\$Ø,Ø(sp)	# count=Ø?	
	.align 4	\$(Ø).tos	# pop stack	
	movd addgd	-8(fp),r2 \$1,r2	<pre># hpartb=last run length</pre>	
	sbitps exit	[r3,r4,r5,r6,r	# all other reg's set up 7]	
	ret	\$(Ø)		TL/EE/9663-19

igset:	.globl save movd ashd addd andd	bigset [rØ,r1,r2,r3,r4,r5,r6] r1,r4 \$-3,r4 r4,rØ \$7,r1	<pre>#save registers we will affect #get current bit offset #divide by eight to get byte offset #add in base. rg is new base pointer #mask off msb's of bit pointer to #get bit = bit offset mod 8</pre>	
#Now we #to dou	e have t uble wor	rue base address and bit d alignment. This speeds	offset within base. Now we will move up the MOVMPD for long bit sequences.	
	movqd andd xorb addqd ashd subd cmpd bge cmpd	3,r4 rØ,r4 \$3,r4 1,r4 \$3,r4 r1,r4 r1,r4 r1,r2 shrt \$32,r4	<pre>#place mask in r4 #get low two bits of address #and get bytes left to alignment #rem += 1 (for the byte we are on) #rem *= 8 to get bits to alignment #subtract current bit offset #is this more than number of bits left #it is, do it the short way #if we are already double aligned, go #do the MoVMPD</pre>	
vm:	beg movd lshd addd ord bicb addgd subd movd movd ashd movd andd ord ord restore ret	<pre>mvm r1,r5 \$5,r5 r4,r5 y3,r6 r4,r2 r2,r4 r2,r4 r3,r5 \$-5,r2 1020(r3),r3 4,r1 \$\$\$x1f,r4 r5[r4:d],\$(r\$) r\$,r,r6 y6 r4,r2 r2,r4 r3,r5 \$-5,r2 1020(r3),r3 4,r1 \$\$\$x1f,r4 r5[r4:d],\$(r\$) \$\$\$</pre>	<pre>#calculate index into table #index = 32 * bit offset #index += run length for in required bits folear last two bits, and #bump to next double #zap sp'd bits off #save run length for a minute #and save pointer to table #r1 = r1 / 32 = number of doubles #get source pattern from table #increment is r1 # yes, use instruction #mask off all but last 32 bits #insert the last few bits #restore saved registers</pre>	
hrt:	.align cmpb beq movd lshd addd ord restore ret	4 \$32,r2 shrt1 r1,r4 \$5,r4 r2,r4 r3[r4:d],Ø(rØ) [rØ,r1,r2,r3,r4,r5,r6] \$Ø	<pre>#check to see if it is exactly #32 bits. If it is, branch. #calculate index into table #index = 32 * bit offset #index += run length #or in required bits #restore saved registers</pre>	
hrt1:	movd restore ret	<sup>4</sup> 1Ø2Ø(r3),Ø(rØ) [rØ,r1,r2,r3,r4,r5,r6] \$Ø	<pre>#copy last entry of table #(all 32 bits) and restore</pre>	TL/EE/9663-20

```
S
 /* Program driver.c feeds line vectors to LINE DRAW.S forming Star-Burst. */
 #include <stdio.h>
#define xbytes 25
#define maxx 19
#define maxy 19
 25Ø
 1999
 1999
 unsigned char bit_map[xbytes*maxy];
 main()
 {
 int i, count;
 /* generate Star-Burst image */
 for (count=1;count<=1000;test++) {</pre>
 }
 }
 TL/EE/9663-21
 /* Start timer and call main procedure of DRIVER.C to draw lines */
 }
 TL/EE/9663-22
 Lit. # 100522
 LIFE SUPPORT POLICY
 NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
 DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
 SEMICONDUCTOR CORPORATION. As used herein:
 1. Life support devices or systems are devices or
 2. A critical component is any component of a life
 systems which, (a) are intended for surgical implant
 support device or system whose failure to perform can
 into the body, or (b) support or sustain life, and whose
 be reasonably expected to cause the failure of the life
 failure to perform, when properly used in accordance
 support device or system, or to affect its safety or
 with instructions for use provided in the labeling, can
 effectiveness.
 be reasonably expected to result in a significant injury
 to the user.
 National Semiconductor
 National Semiconductor
 National Semiconductor
 National Semiconductor
 Ń
 Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
 Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
 Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408
 Europe
AN-522
 Fax: (+49) 0-180-530 85 86

 Fax:
 (+49)
 U-18U-53U
 oo
 oo
 Email:
 chysege fetewn2.nsc.com

 Deutsch
 Tel:
 (+49)
 0-180-530
 85
 85

 English
 Tel:
 (+49)
 0-180-532
 78
 32

 Français
 Tel:
 (+49)
 0-180-532
 93
 58

 Italiano
 Tel:
 (+49)
 0-180-534
 16
 80

 Tsimshatsui, Kowloon
 Fax: 1(800) 737-7018
 Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960
```

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.