LM3000 Evaluation Board

National Semiconductor Application Note 1951 Arief Hernadi July 1, 2009

Introduction

The LM3000 evaluation board is designed to provide design engineer with a fully functional power converter based solution using Dual Output Emulated Current Mode Controller in LM3000. This evaluation board provides two output voltages of 3.3V and 1.2V. The 3.3V output is designed to handle a maximum current of 8A; whereas the 1.2V output has a maximum current capability of 15A. The switching frequency for the converter is set at 500 kHz. The gate signals for each output voltage will be 180 degree out of phase from each other. The printed circuit board consists of 4 layers of FR4 material with 2 ounce copper on top and bottom layer and 1 ounce copper for internal layers. This application note contains the evaluation board schematic, Bill-of-Materials (BOM) and a quick setup procedure. Refer to LM3000 datasheet for complete circuit design information.

The performance of the evaluation board is as follows:

Input Range : 6V to 18V

Output Voltage 1 (VO1) : 3.3V

Output Current 1 : 0 to 8A

Output Voltage 2 (VO2) : 1.2V

Output Current 2 : 0 to 15A

Switching Frequency : 500 kHz

Load Regulation : 1%

Board Size : 2.68 x 3.146 x 0.068 inches

Powering and Loading Considerations

Read this entire page prior to attempting to power the evaluation board.

QUICK SETUP PROCEDURE

Step 1: Set the input power supply current limit to 10A. Turn off the input power supply. Connect the input power supply to VIN terminal. Make sure to connect power supply ground to each GND1 and GND2 terminals in order to provide a short path for input current to return to the power supply.

Step 2: Connect the load with an 8A capability on VO1 and 15A capability on VO2. Connect the positive terminal to VO1 and VO2 and negative terminal to GND1 and GND2.

Step 3: Connect a secondary power supply to EN1 and EN2 terminals. Set the power supply voltage to 5V. The ground return for this power supply should be connected to GND terminal. Since the evaluation board is configured such that V_{OUT2} tracks V_{OUT1} , therefore V_{OUT2} cannot be turned on without turning on V_{OUT1} . Different configuration might be required in order to turn on VOUT2 independently. This will be discussed later in the Tracking section of this application notes.

Step 4: Set V_{IN} to 12V with no load being applied. Turn on the input power supply followed by the secondary power supply in order to power up the enable pins. The output voltage should be in regulation with a value of 3.3V on VO1 and 1.2V on VO2.

Step 5: Slowly increase the load in each output into its maximum output current while monitoring the output voltages in each channel. The output voltages should also be in regulation at each respective maximum output current.

Step 6: Slowly vary the input voltages from 6V and 18.5V. Both output voltages should remain in regulation with a nominal value of 3.3V on VO1 and 1.2V on VO2.

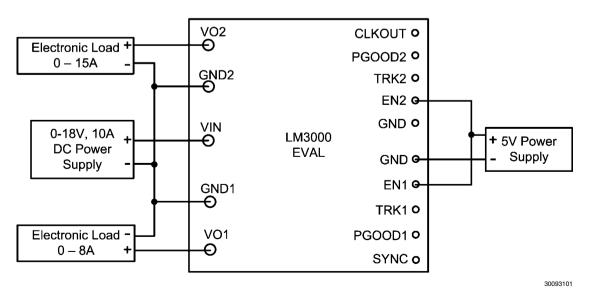
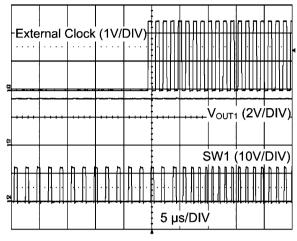



FIGURE 1. Basic Test Setup for LM3000EVAL Board

Board Configuration

EXTERNAL CLOCK SYNCHRONIZATION

A SYNC terminal has been provided in this evaluation board in order to synchronize the converter to an external clock or other fixed frequency signal from 200 kHz to 1.5 MHz. Refer to LM3000 datasheet for complete information.

30093102

FIGURE 2. Synchronization at 3.3V Output

CLKOUT

A CLKOUT terminal provides an external clock signal 90 degrees out of phase with the main clock. This clock signal can be used to synchronize a second LM3000.

TRACKING

LM3000 evaluation board is configured such that VOUT2 tracks VOUT1, while VOUT1 voltage increases with a rate determined by the value of C17 which is the soft-start capacitor for VOUT1 (Condition 1). This configuration will not allow VOUT2 to be turned on independently without turning on VOUT1. In order to track VOUT1, TRK2 pin should be connected to a divider junction between R14 and R15 through R26.

When both outputs are used to track an external source (Condition 2), then R25, R26, and R28 should be left open and a 10Ω resistor should be added into R24 and R27.

If no tracking feature is required, both TRK1 and TRK2 should then be tied to VDD in order to soft-start each output voltage based on soft-start capacitor value (Condition 3). This can be done by keeping R24, R26, and R27 open while adding a 10Ω resistor onto R25 and R28.

Please note that the slew rate of track signal should be lower than the soft-start slew rate which is set by soft-start capacitor value.

The following are the summary of different tracking configuration on LM3000EVAL board:

Condition	R24	R25	R26	R27	R28
1	Open	10Ω	10Ω	Open	Open
2	10Ω	Open	Open	10Ω	Open
3	Open	10Ω	Open	Open	10Ω

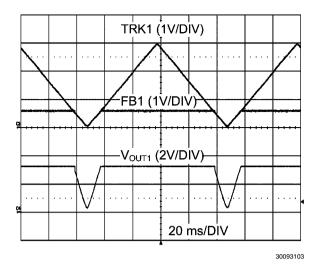
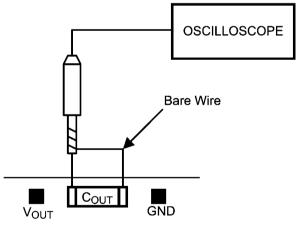
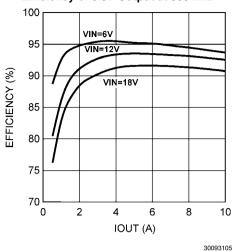



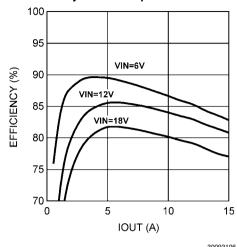
FIGURE 3. Tracking with an External Ramp for 3.3V Output

OUTPUT VOLTAGE RIPPLE

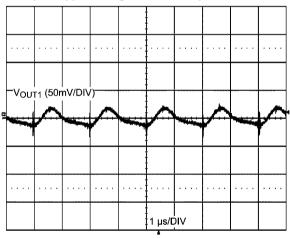

Output voltage ripple measurement should be taken directly across the output capacitor C21 or C22. Care has to be taken to minimize the loop area between the scope probe tip and the ground lead in order to minimize noise in the measurement. This can be achieved by removing the probe's spring tip and ground lead and then wire a bare wire around scope probe shaft. The bare wire should be in contact with the probe shaft since this is the "new" ground lead for the probe. The measurement can be taken by connecting the bare wire onto the ground side of the capacitor and the probe tip onto the other side of the capacitor. Figure 2 shows a diagram of this measurement technique.

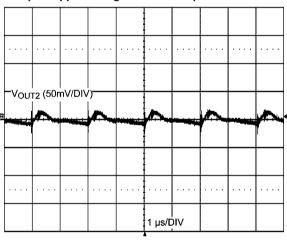


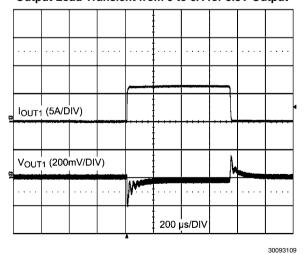
30093104

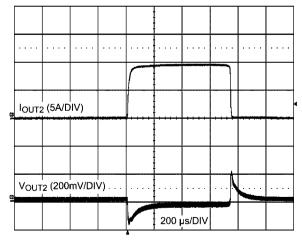

FIGURE 4. Output Voltage Ripple Measurement Setup

Typical Performance Waveforms




Efficiency of 1.2V Output at 500 kHz


Output Ripple Voltage for 3.3V Output at 8A Load

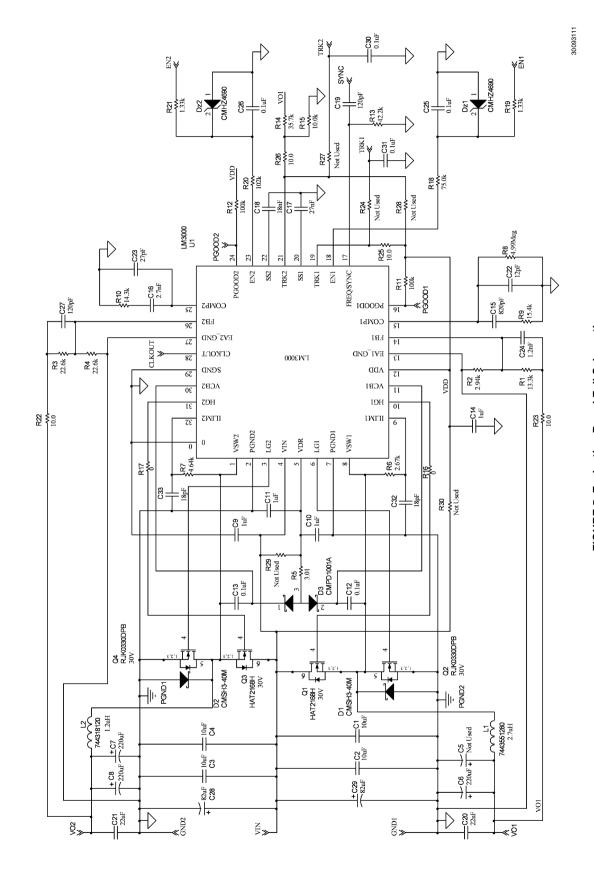

Output Ripple Voltage for 1.2V Output at 15A Load

Output Load Transient from 0 to 6A for 3.3V Output

Output Load Transient from 0 to 10A for 1.2V Output

30093110

Evaluation Board Schematic



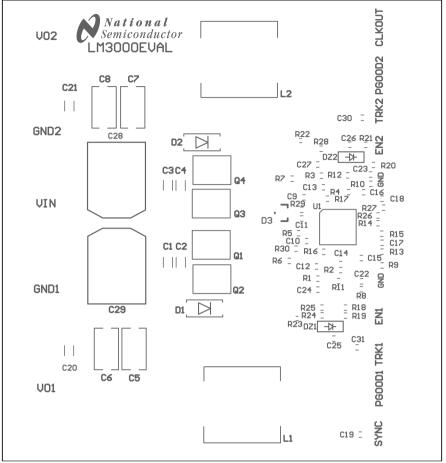
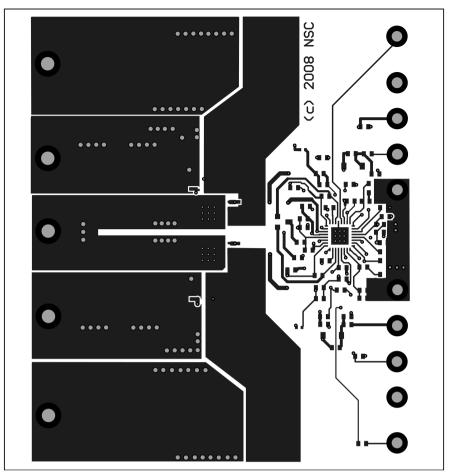
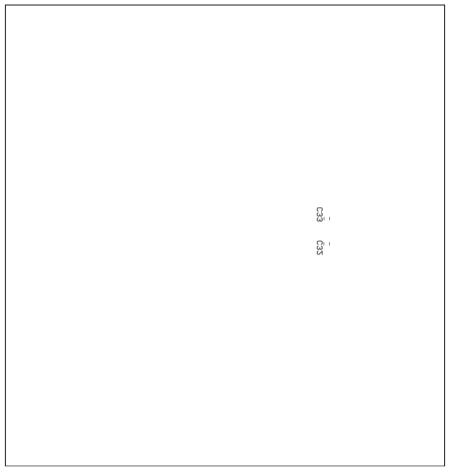

FIGURE 5. Evaluation Board Full Schematic

TABLE 1. Bill of Materials

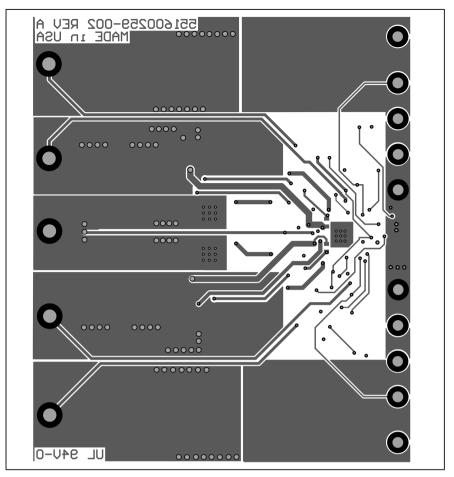
ID	Part Number	Type	Size	Parameters	Qty	Vendor
C1, C2, C3, C4	GRM31CR6E106KA12L	Capacitor, Ceramic	1206	10 μF, 25V, X5R, 10%	4	Murata
C5			7343-43	Not Used	0	
C6,C7, C8	EEF-UE0G221R	Capacitor, Polymer	7343-43	220 μF, 4V, 12 mΩ	3	Panasonic
C9, C10, C11, C14	GRM188R61E105KA12D	Capacitor, Ceramic	0603	1 μF, 25V, X5R, 10%	4	Murata
C12, C13, C30, C31	GRM188R71E104KA01D	Capacitor, Ceramic	0603	0.1 μF, 25V, X7R, 10%	4	Murata
C15	VJ0603Y821KXXA	Capacitor, Ceramic	0603	820 pF, 25V, X7R, 10%	1	Vishay
C16	VJ0603Y272KXXA	Capacitor, Ceramic	0603	2.7 nF, 25V, X7R, 10%	1	Vishay
C17	06035C273KAT2A	Capacitor, Ceramic	0603	0.027 μF, 50V, X7R, 10%	1	AVX
C18	VJ0603Y183KXXA	Capacitor, Ceramic	0603	18 nF, 25V, X7R, 10%	1	Vishay
C19	VJ0603A121JXAA	Capacitor, Ceramic	0603	120 pF, 50V, COG, 5%	1	Vishay
C20, C21	GRM31CR60J226KE19L	Capacitor, Ceramic	1206	22 μF, 6.3V, X5R, 10%	2	Murata
C22	VJ0603A120KXAA	Capacitor, Ceramic	0603	12 pF, 50V, COG, 5%	1	Vishay
C23	06031A270KAT2A	Capacitor, Ceramic	0603	27 pF, 100V, COG, 10%	1	AVX
C24	06035C122KAT2A	Capacitor, Electrolytic	0603	1200 pF, 50V, X7R, 10%	1	AVX
C25,C26	GRM188R71C104KA01D	Capacitor, Ceramic	0603	0.1 μF, 16V, X7R, 10%	2	Murata
C27	06035A121JAT2A	Capacitor, Ceramic	0603	120 pF, 50V, COG, 5%	1	AVX
C28, C29	EEEFK1H151P	Capacitor, Aluminum	10x10.2 mm	150 μF, 50V, 670 mA	2	Panasonic
C32, C33	06031A180KAT2A	Capacitor, Ceramic	0603	18 pF, 100V, COG, 10%	2	AVX
D1, D2	CMSH3-40M	Diode, Schottky	SMA	3A, 40V	2	Central Semiconducto r
D3	CMPD1001A	Diode, Switching	SOT-23	250 mA, 90V	1	Central Semiconducto r
Dz1, Dz2	CMHZ4690	Diode, Zener	SOD-123	5.6V, 500 mW	2	Central Semiconducto r
L1	7443551280	Inductor		2.8 μH, 20A, 3.8 mΩ	1	Wurth Elektronik
L2	744318120	Inductor		1.2 μH, 22A, 1.79 mΩ	1	Wurth Elektronik
Q1, Q3	HAT2168H	N-CH MOSFET	LF-PAK	30A, 30V, 6 mΩ	2	Renesas Technology
Q2, Q4	RJK0330DPB	N-CH MOSFET	LF-PAK	45A, 30V, 2.1 mΩ	2	Renesas Technology
R1	CRCW060313k3FKEA	Resistor	0603	13.3 kΩ, 1%	1	Vishay
R2	CRCW06032k94FKEA	Resistor	0603	2.94 kΩ, 1%	1	Vishay
R3, R4	CRCW060322k6FKEA	Resistor	0603	22.6 kΩ, 1%	2	Vishay
R5	CRCW06033R01FNEA	Resistor	0603	3.01Ω, 1%	1	Vishay
R6	CRCW06032k67FKEA	Resistor	0603	2.67 kΩ, 1%	1	Vishay
R7	CRCW06034k64FKEA	Resistor	0603	4.64 kΩ, 1%	1	Vishay
R8	CRCW06034M99FKEA	Resistor	0603	4.99 MΩ, 1%	1	Vishay
R9	CRCW06034M391 KEA	Resistor	0603		1	Vishay
	CRCW060313k4FKEA			15.4 kΩ, 1%	1	
R10		Resistor	0603	14.3 kΩ, 1%		Vishay
R11, R12	CRCW0603100kFKEA	Resistor	0603	100 kΩ, 1%	2	Vishay


ID	Part Number	Туре	Size	Parameters	Qty	Vendor
R13	CRCW060342k2FKEA	Resistor	0603		1	
				42.2 kΩ, 1%		Vishay
R14	CRCW060335k7FKEA	Resistor	0603	35.7 kΩ, 1%	1	Vishay
R15	CRCW060310k0FKEA	Resistor	0603	10 kΩ, 1%	1	Vishay
R16, R17	CRCW06030000Z0EA	Resistor	0603	0Ω	2	Vishay
R18	CRCW060375k0FKEA	Resistor	0603	75~kΩ , $1%$	1	Vishay
R19, R21	CRCW06031k33FKEA	Resistor	0603	1.33 kΩ, 1%	2	Vishay
R20	CRCW0603102kFKEA	Resistor	0603	102 kΩ, 1%	1	Vishay
R22, R23	CRCW040210R0FKED	Resistor	0402	10Ω, 1%	2	Vishay
R24, R27, R28, R29, R30		Resistor	0603	Not Used		
R25, R26	CRC060310R0FKEA	Resistor	0603	10Ω, 1%	2	Vishay
U1	LM3000	Controller	32 Lead LLP		1	NSC
VIN, VO1, VO2, GND1, GND2	1514-2	Turret Terminal	0.090" diameter		5	Keystone
CLKOUT, PGOOD2 , TRK2, EN2, GND	1573-2	Turret Terminal	0.072" diameter		5	Keystone
GND, EN1, TRK1, PGOOD1 , SYNC	1573-2	Turret Terminal	0.072" diameter		5	Keystone

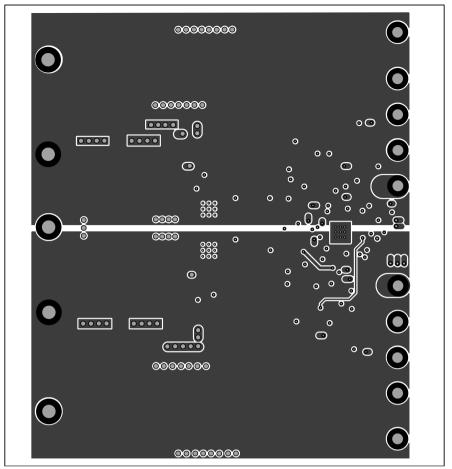
PCB Layout


Top Overlay as Viewed from Top

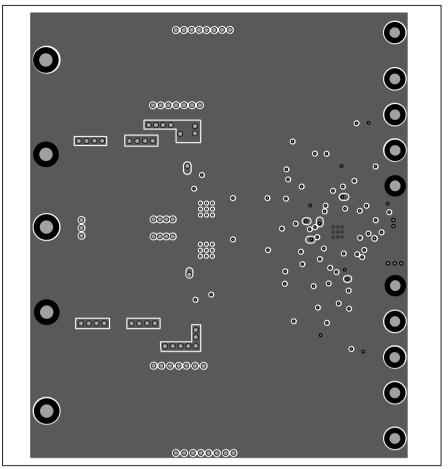
30093112


Top Layer as Viewed from Top

30093113


Bottom Overlay as Viewed from Top

30093114


Bottom Layer as Viewed from Top

30093115

Internal Layer 1 as Viewed from Top

30093116

Internal Layer 2 as Viewed from Top

30093117

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pro	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com