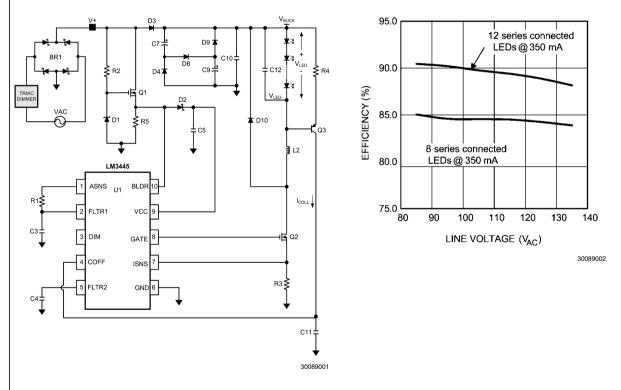
LM3445 Off-Line TRIAC Dimmer LED Driver Demo Board

National Semiconductor Application Note 1935 Matthew Reynolds April 14, 2009

Introduction

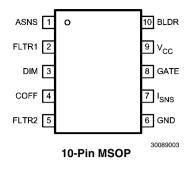
The demonstration board included in this shipment converts $90V_{AC}$ to $135V_{AC}$ input, and drives seven, or eight series connected LED's at 350 mA average current. The LM3445 switching frequency is set at a nominal 225 kHz. This is a four-layer board using the bottom and top layer for component placement. The demonstration board can be modified to adjust the LED forward current, the number of series connected LEDs and switching frequency. Refer to the LM3445 datasheet for detailed instructions.


A bill of materials below describes the parts used on this demonstration board. A schematic and layout have also been

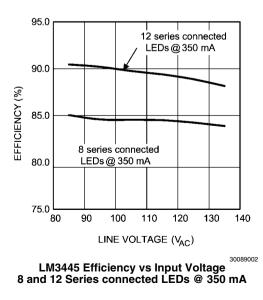
included below along with measured performance characteristics. The above restrictions for the input voltage are valid only for the demonstration board as shipped with the schematic below. Please refer to the LM3445 data sheet for detailed information regarding the LM3445 device, and the application circuit

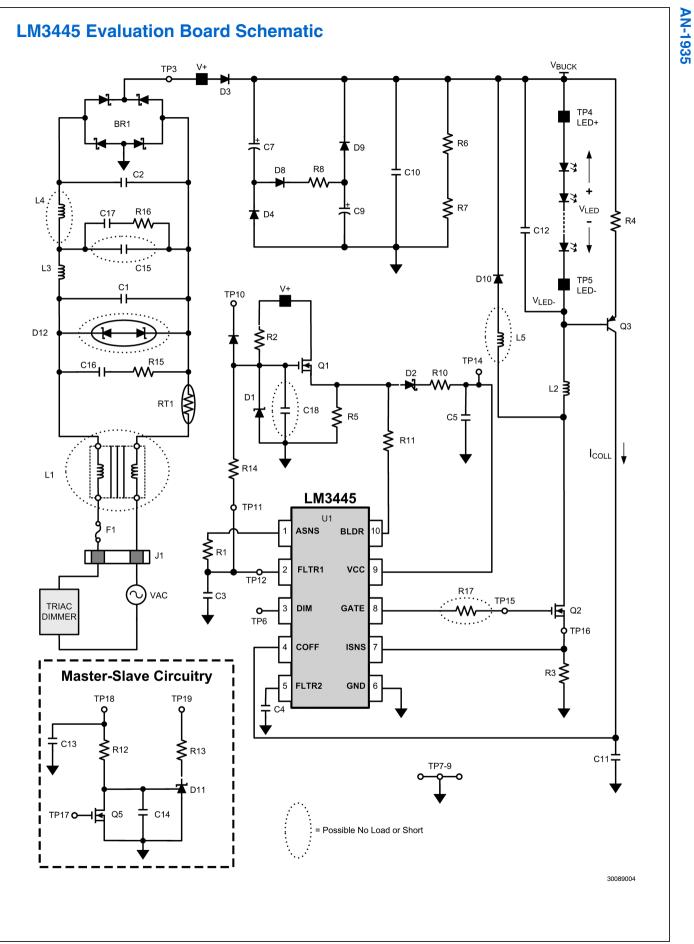
Operating Conditions

 $V_{IN} = 90V_{AC}$ to $135V_{AC}$ Seven, or eight series connected LEDs $I_{LED} = 350$ mA


Simplified LM3445 Schematic and Efficiency Plot

Warning The LM3445 evaluation boards have no isolation or any type of protection from shock. Caution must be taken when handling evaluation board. Avoid touching evaluation board, and removing any cables while evaluation board is operating. Isolating the evaluation board rather than the oscilloscope is highly recommended.


AN-1935

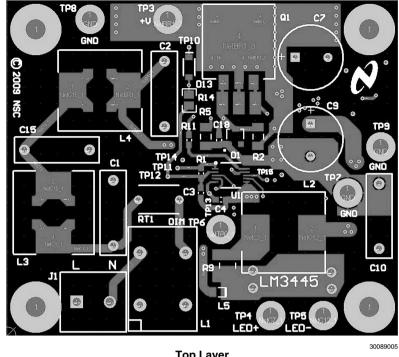

Pin-Out

Pin Description 10 Pin MSOP

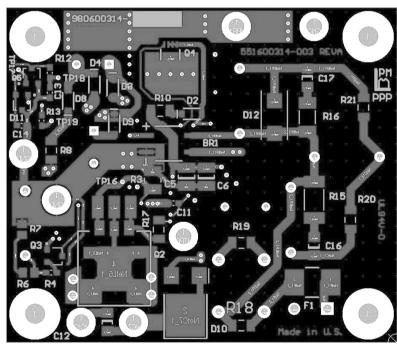
Pin #	Name	Description
1	ASNS	PWM output of the triac dim decoder circuit. Outputs a 0 to 4V PWM signal with a duty cycle proportional to the triac dimmer on-time.
2	FLTR1	First filter input. The 120Hz PWM signal from ASNS is filtered to a DC signal and compared to a 1 to 3V, 5.85 kHz ramp to generate a higher frequency PWM signal with a duty cycle proportional to the triac dimmer firing angle. Pull above 4.9V (typical) to tri-state DIM.
3	DIM	Input/output dual function dim pin. This pin can be driven with an external PWM signal to dim the LEDs. It may also be used as an output signal and connected to the DIM pin of other LM3445 or LED drivers to dim multiple LED circuits simultaneously.
4	COFF	OFF time setting pin. A user set current and capacitor connected from the output to this pin sets the constant OFF time of the switching controller.
5	FLTR2	Second filter input. A capacitor tied to this pin filters the PWM dimming signal to supply a DC voltage to control the LED current. Could also be used as an analog dimming input.
6	GND	Circuit ground connection.
7	ISNS	LED current sense pin. Connect a resistor from main switching MOSFET source, ISNS to GND to set the maximum LED current.
8	GATE	Power MOSFET driver pin. This output provides the gate drive for the power switching MOSFET of the buck controller.
9	V _{CC}	Input voltage pin. This pin provides the power for the internal control circuitry and gate driver.
10	BLDR	Bleeder pin. Provides the input signal to the angle detect circuitry as well as a current path through a switched 230Ω resistor to ensure proper firing of the triac dimmer.

Bill of Materials LM3445 Evaluation Board

REF DES	Description	MFG	MFG Part Number
U1	IC, CTRLR, DRVR-LED, MSOP10	NSC	LM3445MM
BR1	Bridge Rectifier, SMT, 400V, 800 mA	Diodes Inc	HD04-T
.1 (no load, short pad)	Common mode filter DIP4NS, 900 mA, 700 μ H	Panasonic	ELF11M090E
L2	Inductor, SHLD, SMT, 1A, 470 µH	Coilcraft	MSS1260-474KLB
L3	Diff mode inductor, 500 mA 1 mH	Coilcraft	MSS1260-105KL-KLB
4 (no Load, short pad)	Diff mode inductor, 500 mA 1 mH	Coilcraft	MSS1260-105KL-KLB
L5	Bead Inductor, 160 Ω , 6A	Steward	HI1206T161R-10
C1, C2	Cap, Film, X2Y2, 12.5MM, 250VAC, 20%, 10nF	Panasonic	B32921C3103M(K)
C3	Cap, X7R, 0603, 16V, 10%, 470 nF	MuRata	GRM188R71C474KA88D
C4	Cap, X7R, 0603, 16V, 10%, 100 nF	MuRata	GRM188R71C104KA01D
C5, C6	Cap, X5R, 1210, 25V, 10%, 22 μF	MuRata	GRM32ER61E226KE15L
C7, C9	Cap, AL, 200V, 105C, 20%, 33 μF	UCC	EKXG201ELL330MK20S
C10	Cap, Film, 250V, 5%, 10 nF	Epcos	B32521C3103J
C12	Cap, X7R, 1206, 50V, 10%, 1.0 μF	MuRata	C1206F105K5RACTU
C11	Cap, C0G, 0603, 100V, 5%, 120 pF	MuRata	GRM1885C2A121JA01D
C13	Cap, X7R, 0603, 50V, 10%, 1.0 nF	Kemet	C0603C102K5RACTU
C14	Cap, X7R, 0603, 50V, 10%, 22 nF	Kemet	C0603C223K5RACTU
C15 (no load)	Cap, Film, X2Y2, 12.5MM, 250VAC, 20%, 10nF	Panasonic	B32921C3103M(K)
C16, C17	Cap, X7R, 1206, 250V, 10%, 0.047 μF	TDK	C3216X7R2E473K
C18 (no load)	Cap, X7R, 0603, 50V, 10%, 1.0 nF	Kemet	C0603C102K5RACTU
D1	Diode, ZNR, SOT23, 15V, 5%	On Semi	BZX84C15LT1G
D2, D3, D4, D8, D9	Diode, FR, SOD123, 200V, 1A	Rohm	RF071M2S
D10	Diode, FR, SMB, 400V, 1A	On Semi	MURS140T3G
D11	IC, SHNT, ADJ, SOT23, 2.5V, 0.5%	TI	TL431BIDBZR
D12 (No Load)	TVS	Littelfuse	
D13	Diode, SCH, SOD123, 40V, 120 mA	NXP	BAS40H
R1	Resistor, 0603, 1%, 280 kΩ	Panasonic	ERJ-3EKF2803V
R2	Resistor, 1206, 1%, 100 kΩ	Panasonic	ERJ-8ENF1003V
R3	Resistor, 1210, 5%, 1.8Ω	Panasonic	ERJ-14RQJ1R8U
R4	Resistor, 0603, 1%, 576 kΩ	Panasonic	ERJ-3EKF5763V
R5	Resistor, 1206, 1%, 1.00 kΩ	Panasonic	ERJ-8ENF1001V
R6, R7	Resistor, 0805, 1%, 1.00 MΩ	Rohm	MCR10EZHF1004
R8, R10, R17, R18, R19, R21	Resistor, 1206, 0.0Ω	Yageo	RC1206JR-070RL
R20 (No Load)	Resistor, 1206, 0.0Ω		
R9	Resistor, 1210, 0.0Ω	Vishay	CRCW12100000Z0EA
R11	Resistor, 0603, 0.0Ω	Yageo	RC0603JR-070RL
R12	Resistor, 0603, 1%, 33.2k Ω	Panasonic	ERJ-3EKF3322V
R13	Resistor, 0603, 1%, 2.0kΩ	Panasonic	ERJ-3EKF2001V
	Resistor, 0805, 1%, 3.3 MΩ	Rohm	MCR10EZPJ335
R15, R16		Vishay	CRCW2010820RJNEF
RT1	Resistor, 2210, 820Ω	CL-140	KC014L-ND
	Thermistor, 120V, 1.1A, 50Ω @ 25C		
Q1, Q2	XSTR, NFET, DPAK, 300V, 4A	Fairchild	FQD7N30TF
Q3	XSTR, PNP, SOT23, 300V, 500 mA	Fairchild Fairchild	MMBTA92


\mathbf{P}	
Z	
Ξ.	
~	
ä	
σī	

REF DES	Description	MFG	MFG Part Number
J1	Terminal Block 2 pos	Phoenix Contact	1715721
F1	Fuse, 125V, 1,25A	bel	SSQ 1.25


LM3445 Loads and No Load components: This LM3445 evaluation PCB has been built to allow the end user to add or delete EMI circuitry, and an input over-voltage TVS. The input common mode choke (L1), both differential chokes (L3 and

L4) solder pads are created so that 0 ohm 1206 resistors (R18, R19, R20, and R21) can short the components circuit path if necessary.

PCB Layout

Top Layer

Bottom Layer

30089006

Warning The LM3445 evaluation boards have no isolation or any type of protection from shock. Caution must be taken when handling evaluation board. Avoid touching evaluation board, and removing any cables while evaluation board is operating. Isolating the evaluation board rather than the oscilloscope is highly recommended.

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com