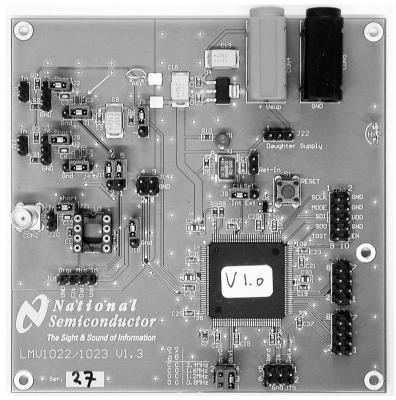
LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board User's Guide


Introduction

The LMV1022/LMV1023 demo board provides a means for easy evaluation of digital PDM microphone amplifiers like the LMV1022, LMV1023, LMV1024 and LMV1026. The demo board has the LMV1022 and the LMV1023 in the 6 pin μ SMD package mounted ready for evaluation. This demo board also provides the means by using the DIP socket (U3) to evaluate parts on DIP conversion boards and offers a four pin interface (J16) to connect other digital PDM sources like microphones containing LMV1022 alike parts.

National Semiconductor Application Note 1784 BeB Hennink March 6, 2008

Starting at Version 1.3 the LMV1022 / LMV1023 demo board is designed for adding a small daughter board which can convert the digitized microphone signals from the I²S interface at J19 back to analog audio. Adding the A/D daughter board enables easier demonstration of the digital microphones. The daughter board can also be used to perform measurements of the performance of the digital microphone in the analog world. The header at J22 is for the to supply to the daughter board.

30050301

FIGURE 1. The LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board

General Description

The LMV1022 and LMV1023 integrate a pre-amplifier and a Sigma-Delta modulator which may be placed inside an electret condenser microphone (ECM). The output is a digital serial bit stream, ideal for 4-wire ECM. The LMV1022 and the LMV1023 are complementary stereo devices. The difference between the two devices is that the LMV1022 outputs the data on the rising edge of the clock signal while the LMV1023 does so on the falling edge. This makes these devices very suitable for stereo microphone applications, where the two microphones connect on the same bus

This next generation digital ECM containing parts like the LMV1022 and LMV1023 produces an over sampled single bit stream to be connected directly to a DSP in a digital audio system. The clock input of the LMV1022 / LMV1023 is a user adjustable clock frequency ranging between 960kHz and 2.4MHz. The LMV1022 / LMV1023 enable a very robust output of an ECM by eliminating the sensitive, low-level analog signal forming the output of a conventional JFET ECM. This also improves the RF immunity, eases system design, and reduces external components. Furthermore this different system partitioning of the Analog-to-Digital conversion enables an all-digital baseband processor in mobile communication systems.

By changing the clock frequency the LMV1022 and LMV1023 can be used in a wide range of applications ranging from the limited 3.4kHz voice bandwidth to full 20kHz audio bandwidth.

Operating Conditions

Temperature Range	$-40^{\circ}C \le T_A \le 85^{\circ}C$
 LMV1022 / LMV1023 Power Supply Voltage 	$1.6 V \leq V_{DD} \leq 3.6 V$
 Demoboard Power Supply Voltage 	$4.5V \le V_{sup} \le 5.5V$

Board Features

The LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier demo board has an on board voltage regulator (U4) converting the 4.5-5.5V (\approx 120mA) to the internal 3.3V supply voltage required for the FPGA. The demo board is equipped with a 12MHz XTAL oscillator (X1) which can generate the FPGA clock.

The demo board provides the means of easy evaluation of connected PDM microphones at four different frequencies by using the on board clock generator. J11 is used to select which of the four clock frequencies (960kHz, 1.2MHz, 1.6MHz or 2.4MHz) is used. For testing at other clock frequencies an external clock source can be connected on the board at J7.

The FPGA has two decimation filters implemented in hardware and converts the PDM signal from the microphones to the standard I²S signals which can easily be evaluated using test equipment like the Audio Precision.

The demo board provides two μ SMD parts already mounted on the PCB for easy evaluation of the LMV1022 and the LMV1023 It also provides an interface to connect four wire PDM microphones for testing demonstration and evaluation.

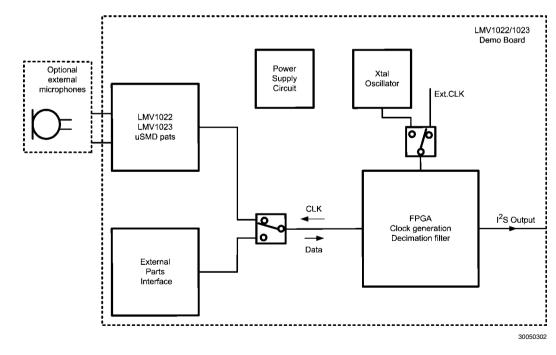


FIGURE 2. The LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board Block Diagram

Block Diagram

Evaluating the On-Board LMV1022 / LMV1023

The output signals of the LMV1022 and LMV1023 mounted on the board can be evaluated by connecting an I^2S slave to the I^2S outputs on J19, e.g. the programmable Serial Interface of an Audio Precision PSIA2722, (See *Connections to the* Audio Precision (PSIA2722) and Settings of the Audio Precision SYS2722/ PSIA2722)

With the settings from *Table 1*, stereo operation of the on board LMV102 and LMV1023 can be evaluated for an audio bandwidth of 20kHz. These settings are illustrated in *Figure 3*

Designator	Fuction or Use	Connect
J1, J4	Power supply U1, U2	Short 2-3
J2	Input capacitor short circuit U1	Short
J3	Input for Audio test signal U1	Pin2 signal, Pin1=GND
J5	Input capacitor short circuit U2	Short
J6	Input for Audio test signal U2	Pin2 signal, Pin1=GND
J8	Clock source selection FPGA	1-2 = internal 12MHz
J9	DUT supply voltage	Internal analog supply =2-3 Short External analog supply = connected to 1-2
J11	Sample frequency 48kHz, <i>Table 4</i> See	2.4MHz microphone clock
J15	Selection of the source for FPGA input.	3-5 + 4-6 = both on board uSMD parts

TABLE 1. Default setting for evaluating the on board μSMD part

With the above settings, the board is ready to operate the two on board parts (LMV1022 and LMV1023) at the internal 3.3V

power supply. For evaluation at other supply voltages see *Evaluating at Other Supply Voltages*

30050303

FIGURE 3. Setting for testing the On Board LMV1022 and LMV1023

Evaluating at Other Supply Voltages

The LMV1022 and LMV1023 parts have a supply voltage range from 1.6V to 3.6V. The power supply on the demo board has a constant output voltage of 3.3V. The demo board also supports the external control of the microphone voltage. The board changes for external microphone voltages are as follows:

- 1. Remove the jumper from J9 (pin 2-3)
- 2. Apply external supply voltage within the 1.6V to 3.6V range at J9 between pin 1 and pin 2. Pin1=GND, Pin2= $+V_{DD}$

See Figure 4

This will automatically adjust the thresholds and levels for the digital input- and output signals for the on board FPGA I/O and the device under test

When evaluating the parts at other supply voltages than the on board 3.3V supply, the FPGA is powered from the on board 3.3V voltage regulator Via +Vsup and GND. Only the I/O part interfacing with the device under test will follow the external supply voltage for correct logical threshold voltages. This only uses a few milliampere from the external supply source.

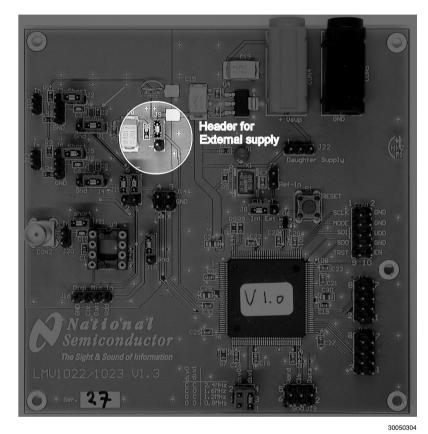
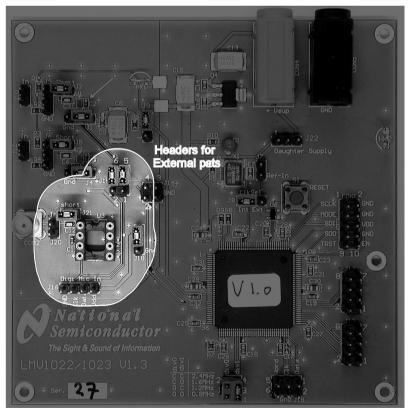


FIGURE 4. External controlled Supply Voltage

Evaluation Using the DIP Socket

The LMV1022 / LMV1023 demo board is equipped with a DIP socket (U3). This can be used to evaluate and test parts on a conversion board or in a DIP8 socket see *Dip socket pin out*. The output signal from the part in the DIP socket can be evaluated by connecting an I²S slave to the I²S outputs on J19. e.g. the programmable Serial Interface of an Audio Precision, PSIA2722. (See *Connections to the Audio Precision*)


(PSIA2722) and Settings of the Audio Precision SYS2722/ PSIA2722)

When the settings from *Table 2* are used, the board is ready to operate the parts in the DIP socket at the internal 3.3V power supply. With these settings, operation of the part can be evaluated for an audio bandwidth of 20kHz (see *Figure 5*)

Designator	Fuction or Use	Connect		
J8	Clock source selection FPGA	1-2 = internal 12MHz		
6C	DUT supply voltage	Internal analog supply =2-3 Short External analog supply = connected to 1-2		
J11	Sample frequency 48kHz, Table 4	2.4MHz microphone clock		
J15	Selection of the source for FPGA input.	1-3 + 2-4 = DIP socket U3 and PDM Microphone interface connector J16		
J18	Power supply U3	Short 2-3		
J20	Input for Audio test signal Part in DIP socket U3			
J21	Input capacitor short circuit U3	Short for noise measurement		
CON2	Coaxial input for connection to AC audio signal generator when testing with part in DIP socket U3			

TABLE 2. Default setting for evaluating the part in the DIP socket

Evaluation at supply voltages other then 3.3V is possible by using the settings from *Evaluating at Other Supply Voltages*

30050305

Dip socket pin out

PIN	Function
1	Input
2	GND
3	V _{ref}
4	CLK
5	NC
6	V _{DD}
7	Data
8	NC

Evaluation of Other PDM Parts and Microphones

The settings for evaluating other PDM parts and PDM microphones are the same as for evaluation using the DIP socket,

TABLE 3. Default setting for evaluating other PDM parts and microphones

Designator	Fuction or Use	Connect
J8	Clock source selection FPGA	1-2 = internal 12MHz
J9	DUT supply voltage	Internal analog supply =2-3 Short External analog supply = connected to 1-2
J11	Sample frequency 48kHz, Table 4	2.4MHz microphone clock
J15	Selection of the source for FPGA input.	1-3 + 2-4 = DIP socket U3 and PDM Microphone interface connector J16

Evaluation at supply voltages other then 3.3V is possible using the settings from *Evaluating at Other Supply Voltages*

as described in *Evaluation Using the DIP Socket*. The only difference is that the signals are now connected to J16 with the signals to the proper pin:

- 1. ground (GND)
- 2. Clock (CLK)
- 3. Data
- 4. Supply (Vdd)

With the settings from Table 3, mono and stereo operation of the part(s) connected to J19 can be evaluated at an audio bandwidth of 20 kHz

ng the settings from *Evaluating at Other Supply Voltages*

The On-Board Clock Generator

Table 4. This header can be found at the bottom side of the PCB below the FPGA See also *Figure 6*

The clock frequency of the PDM microphone can be selected by placing the correct jumpers on header J11 as shown in

J11 (Note 1)Pins 1-2 / 3-4	Sample Frequency (kHz)	Clock Frequency (MHz)
C/C	48	2.4
C/O	32	1.6
O/C	24	1.2
0/0	16	0.8

Note 1: C = header Closed, O = header Open

FIGURE 6. Clock rate and I²S interface

300

Connections to the Audio Precision (PSIA2722)

The Demo board can be connected to the AP digital interface (PSIA2722) by using J19 and the connections as described in *Table 5*

TABLE 5. Connections to an Audio Precision				
Header-pin	Audio Precision connector	Comment		
J19-1	Data in			
J19-3	Bit Clk in			
J19-5	Frame Clk in			
J19-2,4,6	GND			
J7	Master CLK	See Testing at Other Clock Frequencies		

Testing at Other Clock Frequencies

Header J7 can be used for applying an external clock signal to the FPGA. This will require that J8 is changed to use the external clock source 'EXT' (see *Figure 7*) When using the external FPGA clock there is more freedom in choosing the clock frequency used by the decimation filter and the clock frequency of the LMV1022 / LMV1023. In this mode of oper-

ation of the demo board, the formula below gives the resulting clock frequency assuming both jumpers on J11 are closed. The duty cycle of the external clock signal must be between 45% and 55%.

LMV1022 clock frequency =
$$\frac{\text{Applied Clock J7}}{5}$$

FIGURE 7. External FPGA Clock

Description of Jumpers and Connectors on the LMV1022 / LMV1023 Demo Board.

Most of the functions that are controlled by the jumpers on the LMV1022 / LMV1023 demo board are also indicated on the PCB in silk-screen as shown in *Figure 1* and *Figure 13*

Designator	Fuction or Use	Comment
HK1, HK2	Ground connection for probes	
J1	Power supply U1	1-2 = Connect External Analog supply 2-3 = Short, Interna Analog supply
J2	Input capacitor short circuit U1	Short for noise measurement
J3	Input for Audio test signal U1	
J4	Power supply U2	1-2 = Connect External Analog supply 2-3 = Short, Interna Analog supply
J5	Input capacitor short circuit U2	Short for noise measurement
J6	Input for Audio test signal U2	E.G. From an Audio precision source.
J7	External clock input FPGA	
J8	Clock source selection FPGA	1-2 = internal 12MHz 2-3 = external clock
J9	DUT supply voltage	1 -2 connect external supply 2-3 Short, internal supply
J10	Microphone input part U1	
J11	Microphone Clock divider Frequency selection header.	Table 4
J12	Microphone input part U2	
J13	General purpose outputs	Not Used
J14	Monitor output for digital microphone digital interface signals	1-2 = Microphone clock 3-4 = microphone Data
J15	Selection of the source for FPGA input.	3-5 + 4-6 = on board µSMD parts $1-3 + 2-4 =$ DIP socket U3 and PDM Microphone interface connector J16
J16	PDM Microphone interface connector	To connect one or two (stereo) PDM digital microphones (LMV1022 + LMV1023 or LMV1024 + LMV1026)
J17	General purpose inputs	Not Used
J18	Power supply U3	1-2 = External Analog supply 2-3 = Internal Analog suppl
J19	I ² S interface	Table 5
J20	Input for Audio test signal Part in DIP socket U3	
J21	Input capacitor short circuit U3	Short for noise measurement
+RED	+ Supply voltage	4.5V < V _{sup} < 5.5V
- Black	- Supply voltage	
CON1	JTAG interface	Programming the FPGA
CON2	Coaxial input for connection to AC audio signal generator when testing with part in DIP socket U3	
	generator when testing with part in DIP socket U3	

Settings of the Audio Precision SYS2722/ PSIA2722

When using the AP-SYS2722 it is important to use the correct settings. These settings are shown in *Figure 8*.

Ap PSIA Serial Inte	erface Rec	eiver:						_ 🗆 ×
Channel Data Assi	gnment					Channel Data	Structure	
Analyzer Channel	A	В)			> 24
Data Channel	0	1				MSB First		
125		ise / Fall			Pad Data			Pad
Receive Data Clo				Γ	bits			1 bits
DeEmphasis: 0	ff	-				L Justify		
Scale Freq. By: D Rate Ref: 48		f V				20 16 12		
Clocks	Direction Out / In	Bit Clock Edge Sync Rise / Fall	Invert Wfm	Shift 1 bit left	Bit Wide Pulse	Setting	С	omputed Rate
Frame Clock (Fs) (Word Clock)	0 0	• •				48.0000 kHz	= 48.00	00 kHz
Channel Clock (Subframe Clock)	OUT	• •				x 2 channe	ls = 96.00	00 kHz
Bit Clock	0.0					x 25 bits/ channe	= 2.400	00 MHz
N*Fs	OUT					250 x Fs	= 12.00	00 MHz
Master Clock	Tx In, B	x Out 💌				x Fs	= 12.00	00 MHz
		L	.ogic V	oltage	Level-			
			5 V		.3V	3.3 V 2.4 V	1.8 V	
OUTPUTS OFF								
			<u> </u>	TTL	្ឋ	CMOS	<u> </u>	
				TIC		CMUS		

The digital I/O must be set as shown in Figure 9

30050307

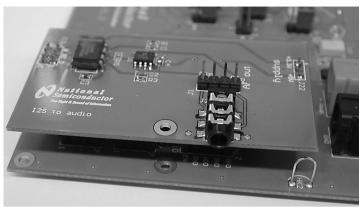
FIGURE 8. PSIA 2722 Settings

Output		Input	
Connector:	PSIA 💌	Connector: PSIA	
SR Range:	Auto 💌		
Sample Rate (SR):	48.0000 kHz 🛛 💌	Sample Rate-ISR: 47.9997 kHz	
SSR:	46.8750 kHz		
Voltage:		Voltage:	
Audio Format:	Linear 💌 24	Audio Format: Bits 💌 24	
PreEmphasis:	Off 🗾	DeEmphasis: Off	
Scale Freq. by:	DIO Rate Ref 🛛 💌	Scale Freq. by: DIO Rate Ref. 💌 Rate Ref: 48.0000	kHz
		Channel A: Channel B: Mode: 188.0 mFFS ▼ 1/2 Pk-Pk ▼	[
Rise/Fall Time: Common Mode S Amplitude:	Interfering Noise: Sine Frequency:	24 20 16 12 8 4 A:	re Bits Bits
Jitter Generatio	· · · · · · · · · · · · · · · · · · ·	Jitter Measurement	
Off Amplitude:	Frequency:	Jitter: Image: Comparison of the sector of	ts

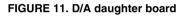
FIGURE 9. Audio Precision Digital I/O setting

Sometimes the PSIA has a problem getting a stable lock on the input signal, therefore it is preferred to use the *'DIO Rate Ref' setting'* for the *'Scale frequency by :'* parameter analyzer is selected and that the input from the *Digital @ ISR* is selected.

In the digital Analyzer the different parameters can be measured as shown in *Figure 10*. Make sure that The DSP audio


Ap Digital Analyzer	_ 🗆 ×
Analyzer: DSP audio analyzer (a	analyzer) 📃 💌
Ch A Input: Digital @ ISR	The B
AC Coupled 💌 Coupling -	- AC Coupled 💌
-23.416 dBF 💌 Level	-23.280 dBF 💌
.999533 kHz 💌 Freq	.999530 kHz 💌
🔽 🗹 Range 🔽	Z 📃 🔽
•61.256 dB 🔽 Reading -	60.830 dB 💌
Measurement Function : THD	+N Ratio 💌
🔽 🔽 Range 🔽	Z
Det: Auto 💌 RMS 💌	BP/BR Fltr Freq
BW: 22 Hz 💌 Fs/2 💌	🛛 🗛 🖌 🖌
Fltr: "A" Weighting	
- Digital References	
dBr1:100.0 mFFS 💌 Freq	r 1.00000 kHz 💌

30050309


FIGURE 10. Digital Analyzer

D/A Converter Daughter Board

Starting at version 1.3 the LMV1022 / LMV1023 demo board provides the means to plug on a small D/A convertor daughter board.

30050311

The mounted D/A daughter board is shown in *Figure 11* The daughter board consist of a 1543 I²S stereo D/A converter and a high performance audio operational amplifier (LM4562) which are supplied from the main LMV1022 / LMV1023 demo board PCB via the J22 (only for demo boards V1.3 or higher) . This board can be plugged on the headers J19 and J22 See for the location of these header. The output signal of the D/A converter board at J1 and J2 is DC coupled with a DC level of about 3V. For this reason it is NOT advised to plug in a headphone directly in the 3.5mm jack connector. J2 is intended to be used to drive a small stereo amplifier

The schematic for this A/D daughter board can be found in *Figure 22*

FIGURE 12. Connections for D/A daughter board

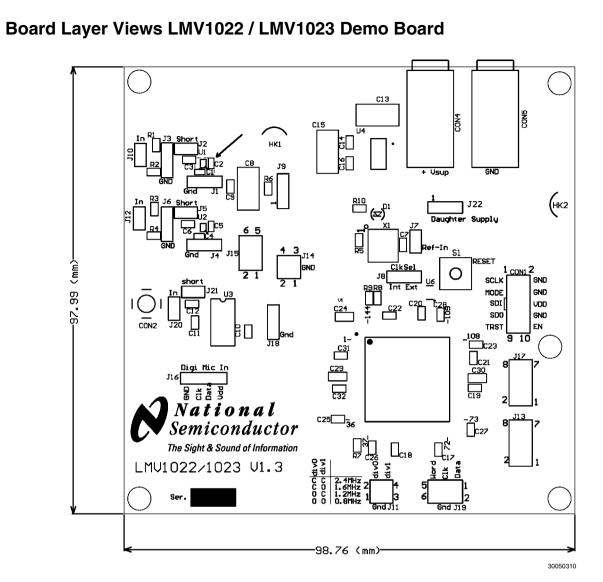
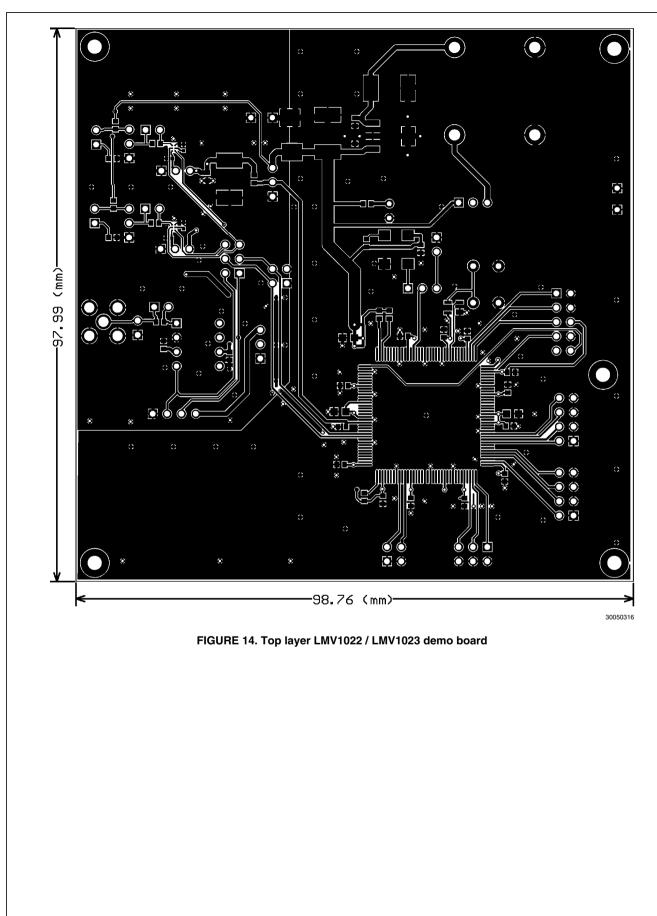



FIGURE 13. Silk-screen LMV1022 / LMV1023 demo board

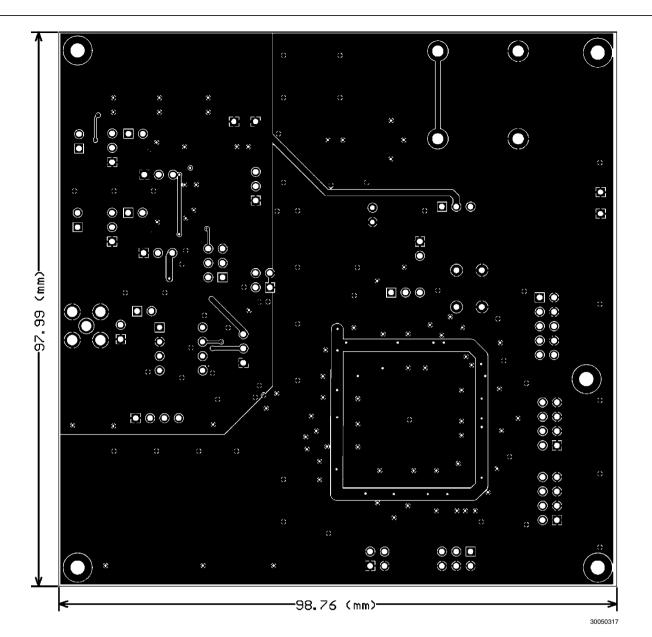
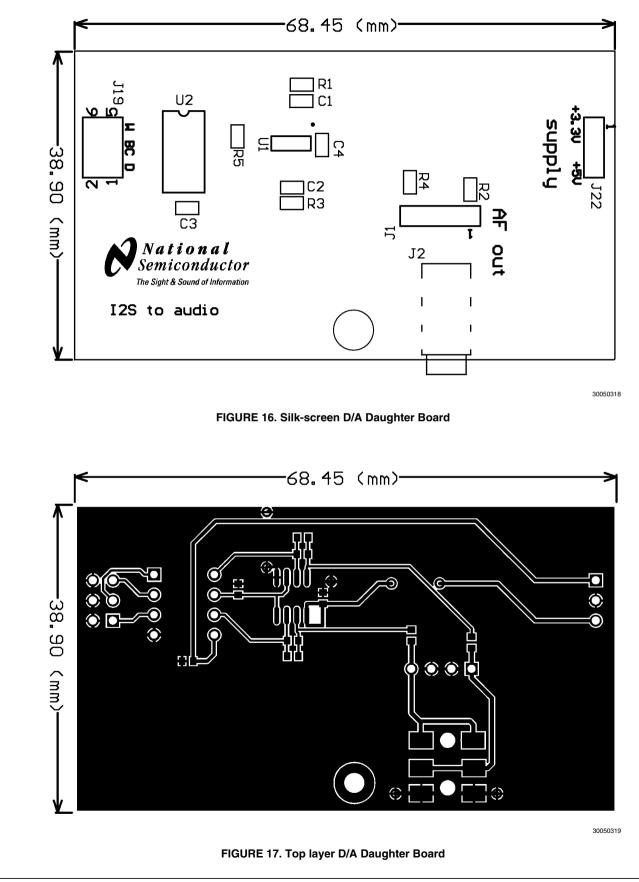
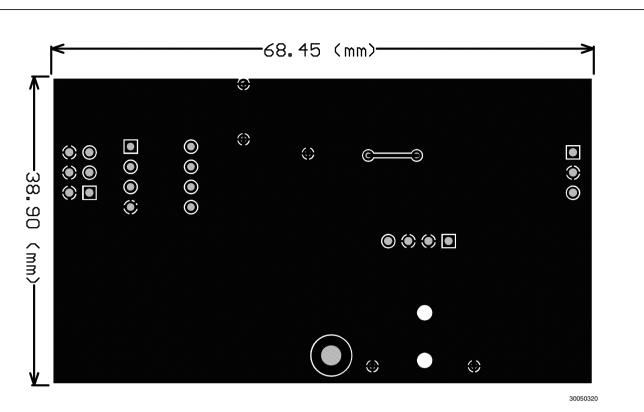
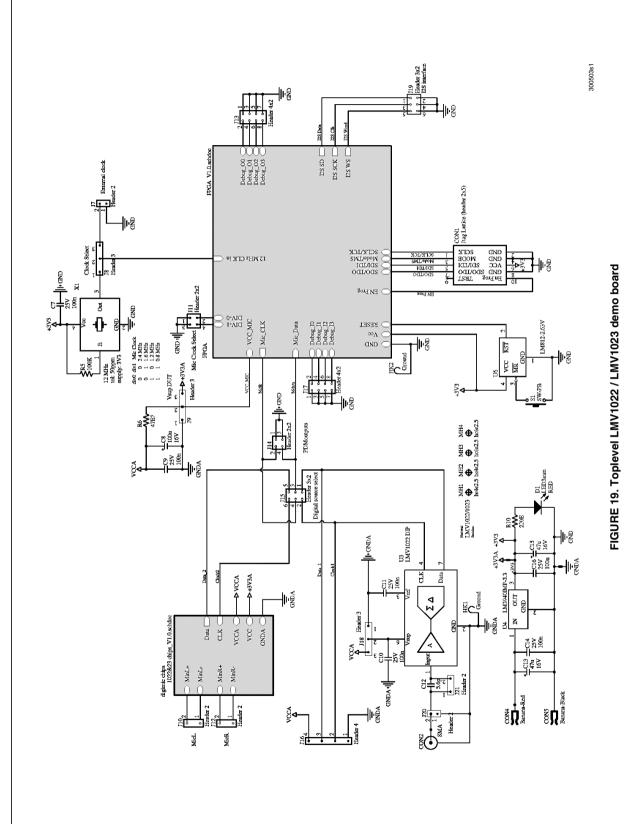
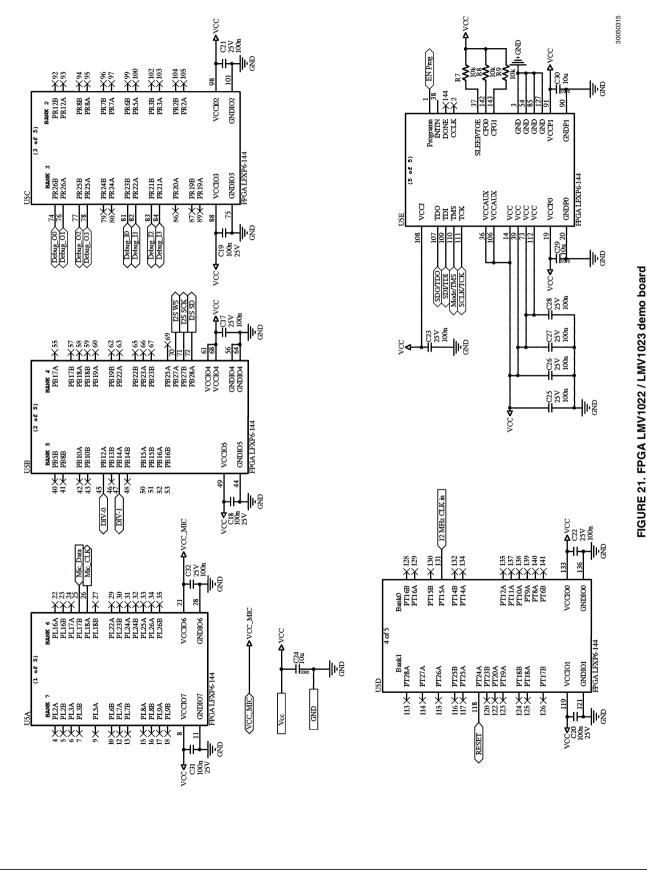
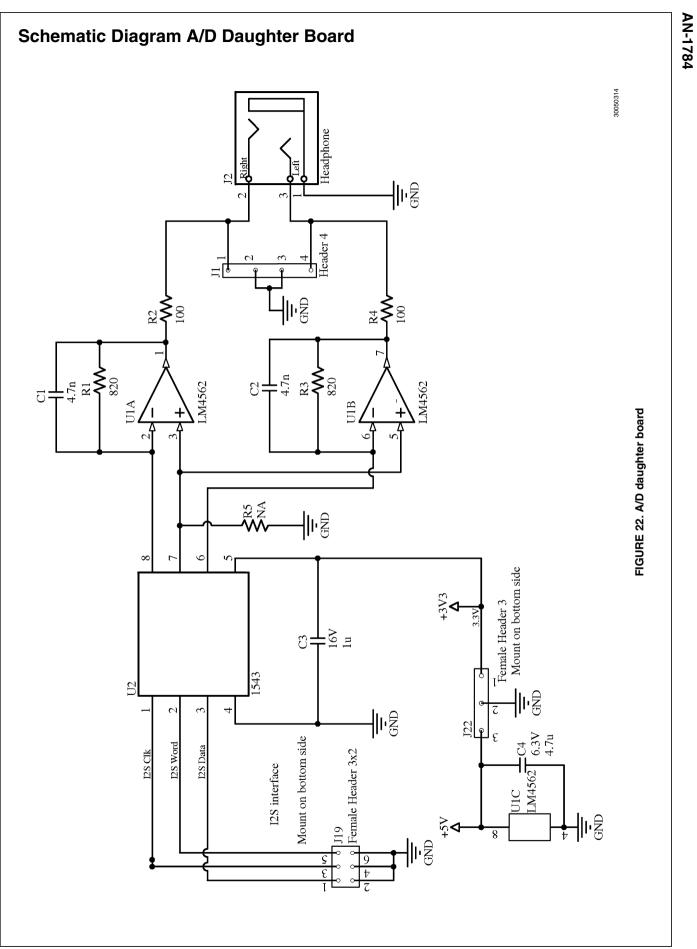



FIGURE 15. Bottom layer LMV1022 / LMV1023 demo board

Board Layer Views D/A Daughter Board


FIGURE 18. Bottom layer D/A Daughter Board

300503s2 VCCA Data GNDA VCC Ğ VCCA VCC GNDA FIGURE 20. On board parts LMV1022 / LMV1023 demo board UI LMV1022 U2 LMV1023 P $\mathbf{B2}$ B F CLK Data CLK Data Vref Vref ΒJ IΠ Σ Header 3 ۵ ۲ Header 3 -li-vor -ll-vor Ţ Ţ Ţ GND GND . IJ IJ /sup ZA Z٦ < × ΞL 30 ACA V(CA **∦**•₽ **I**I-B **♦** ٢ T ∩ G J5 0 G Header 2 o o J2 Header 2 °5 Å−s 9,43 7 T Ieader 3 Header 3 ۳ ات <u>ي</u>و ا 2 2 ♣RI \$2.2K **≫**R3 2.2K R4 20 °v °N MinL+ MinR+ MinL-MinR-

BOM LMV1022 / LMV1023 Demo Board

RefDes	Part Description	Value	Tolerance	Rating	Package Type
C1, C2, C4, C5	Multilayer Ceramic Capacitor	100nF	20%	10V	0402
C3, C6, C12	Ceramic Capacitor	5.6pF	10%	16V	0603
C7, C9, C10, C11, C14, C16, C17, C18, C19, C20, C21, C22, C23, C25, C26, C27, C28, C31, C32	Multilayer Ceramic Capacitor	100nF	20%	25V	0603
C8	Tantalum Capacitor	100uE		16V	Case D
C13, C15	Tantalum Capacitor	47μF		16V	Case D
C24, C29, C30	Multilayer Ceramic Capacitor	10µF		16V	0805
CON1	Jtag Lattice (header 2x5)				Header 2x5
CON2	SMA				SMA
CON4	Banana-Red				
CON5	Banana-Black				
D1	LED3mm				
HK1, HK2	Ground connection (jumper 5mm high)				
J1, J3, J4, J6, J8, J9, J18	Header 3				HDR1X3
J2, J5, J7, J10, J12, J20, J21	Header 2				HDR1X2
J11, J14	Header 2x2				HDR2X4
J13, J17	Header 4x2				HDR2X3
J15, J19	Header 3x2				Header 3x2
J16	Header 4				HDR1X4
J22	Daughter Supply				HDR1X3
R1, R3	Resistor SMD	2.2KΩ	5%		0603
R2, R4	Resistor SMD	0Ω			0603
R5	Resistor SMD	100KΩ	5%		0603
R6	Resistor SMD	47Ω	5%		0603
R6	Resistor SMD	10kΩ	5%		0603
R10	Resistor SMD	220Ω	5%		0603
S1	pushputton switch				SW-PB
U1	LMV1022				uSMD-6x0.5pitch
U2	LMV1023				uSMD-6x0.5pitch
U3	DIP part socket				DIP-8
U4	LM3940IMP-3.3				SOT232
U5	FPGA LFXP6-144				SQFP50P2250 X 2250 X 165-144M
U6	LM812-2.63V				SOT143
X1	Xtal Osc 12 MHz				CMAC CFPS

BOM A/D Daughter Board

RefDes	Part Description	Value	Tolerance	Rating	Package Type
C1, C2	Multilayer Ceramic Capacitor	4.7nF	±10%	16V	0603
C3	Multilayer Ceramic Capacitor	1µF	±20%	16V	0603
C4	Multilayer Ceramic Capacitor	4.7µF	±20%	6.3V	0603
J1	Header 4x1				HDR1X4
J2	3,5 mm stereo output				3.5mm stereo
J19	Female Header 3x2				HDR2X3
J22	Female Header 3x1				HDR1X3
R1, R3	Resistor	820Ω	±5%		0603
R2, R4	Resistor	100Ω	±5%		0603
R5	Resistor	N.A.			0603
U1	High Performance Opapm	LM4562			SO8_1.27 pitch
U2	I2S DAC	TDA1543			DIP-8

Revision History

Rev	Date	Description
1.0	03/06/08	Initial release.

Notes

Pi	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench	
Audio	www.national.com/audio	Analog University	www.national.com/AU	
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes	
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts	
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green	
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging	
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality	
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns	
Power Management	www.national.com/power	Feedback	www.national.com/feedback	
Switching Regulators	www.national.com/switchers			
LDOs	www.national.com/ldo			
LED Lighting	www.national.com/led			
PowerWise	www.national.com/powerwise			
Serial Digital Interface (SDI)	www.national.com/sdi			
Temperature Sensors	www.national.com/tempsensors			
Wireless (PLL/VCO)	www.national.com/wireless			

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

Americas Technical Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

National Semiconductor

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com