
Emulating the PowerWise
Interface Using GPIOs and
Software
Introduction
PowerWise Interface (PWI) compatible Energy Management
Units (EMUs) from National Semiconductor are flexible,
highly integrated, and digitally programmable system power
managers that can be used in a variety of applications.
Controlling or programming the EMU in the system is
achieved using the PWI open-standard (www.pwistandar-
d.org). The method for using the PWI1.0 connected EMU in
systems with a processor containing a hardware PWI master
like the Advanced Power Controller (APC) is obvious (www-
.powerwise.national.com). Using the PWI connected EMU in
a system where the processor does not contain a hardware-

based PWI master is straight forward using a GPIO port and
a PWI protocol software driver.

This application note describes a strategy for emulating a
PWI master using general purpose input/output pins –
GPIOs – and a PWI master software driver. This strategy
can be deployed with a variety of processors, DSPs, and
PLDs. Example C code for such a driver is included later in
this document. The code presented has been verified using
National’s COP8 microcontroller and the LP5550 Power-
Wise EMU, but should be easily portable to any processor
architecture. This application applies specifically to PWI1.0,
but a similar scheme could be used for PWI2.0 functionality.

20189401

PWI Discussion
The PWI 1.0 specification provides for a single-master,
single-slave point-to-point bus. The point to point nature of
the specification greatly simplifies the emulation of the PWI
master.

Digital communication over the PWI is managed with a
2-wire serial interface. The PWI data line, SPWI, is bidirec-
tional. From the master viewpoint the SPWI line is driven by
the master for all command and data write frames, and
driven by the slave (the EMU) for data read frames. The PWI
master always drives the bus clock, SCLK. The PWI physical
layer is implemented as a push-pull architecture. There are
very weak bus pull-down resistors, or bus holders, to main-
tain low signal levels on the bus during turn around cycles,
and at power-on.

PWI Emulation
Emulating the PWI master requires that the software driver
controls the allocated GPIOs to create a direct-drive, always
output SCLK pin, and a bi-directional SPWI pin. The operat-
ing frequency range for the PWI bus is 0Hz to 15MHz, with
the clock being present only during a data transaction. The
fact that the bus is specified down to DC means that any
device, operating at any frequency, can handle the PWI

master task. This also allows a great deal of flexibility in
implementing the driver because the EMU is not timing
dependent beyond the mandatory set-up and hold times and
the minimum pulse width of the SCLK.

The emulation driver should include support for the following
PWI commands:

• Core Voltage Adjust

• Reset

• Sleep

• Shutdown

• Wakeup

• Register Write

• Register Read

• Synchronize

It is important to pay attention to the I/O voltage levels on the
PWI bus. The LP555x EMUs will signal at the level of their
I/O voltage regulator (i.e., the regulator associated with PWI
register R7). This regulator is programmable and should be
set to the same voltage as used by the PWI master if it does
not directly drive the I/O ring of the master. If the I/O voltage
regulator is used to power the I/O ring of the master, then no
special care needs to be taken.

National Semiconductor
Application Note 1460
Michael Drake
April 2006

E
m

ulating
the

P
ow

erW
ise

Interface
U

sing
G

P
IO

s
and

S
oftw

are
A

N
-1460

© 2006 National Semiconductor Corporation AN201894 www.national.com

Software For PWI Emulation
The first functions that need to be implemented are the initialization, frame write, and frame read functions. It will be helpful to
refer to the PWI specification, available at www.pwistandard.org, as you read through the frame write and read functions.

The initialization code is device-dependent, so only pseudo-code is provided here.

pwi1_initialization(void)
{
GPIO1_value = LO; //Make sure the SCLK line comes on driven low
GPIO1_configuration = push-pull output;
GPIO2_value = LO; //Make sure that the SPWI line comes on driven low
GPIO2_configuration = push-pull output; //All transactions begin with SPWI as an output

#define SCLK GPIO1
#define SPWI GPIO2
#define SPWI_DIR GPIO2 Configuration

pwi1_synchronize(); //A PWI synchronize command should always be issued at POR
}

The following two functions implement the data link layer of the PWI.
byte pwi1_write_frame(byte data)
{
byte error = 0; //Return value
byte bit = 0; //Used as data counter to serialize "data"

SPWI_DIR = OUT; //Make sure we are driving the SPWI pin

// START Bit
SPWI = HI;
pwi1_clock_pulse(); //See the helper function later on in this code

// Send the two reserved bits, 00b
SPWI = LO;
pwi1_clock_pulse(); //Reserved 1
pwi1_clock_pulse(); //Reserved 2

// Now we will do the payload bits
for(bit = 0; bit < 8; bit++){
SPWI = ((data & 0x80) ? HI : LO); //Transfer data out the MSB of data
pwi1_clock_pulse(); //Clock each bit out
data <<= 1; //Slide the next MSB into place

}

// STOP Bit
SPWI = LO;
SCLK = HI; //Take the SCLK pin high
SPWI_DIR = IN; // If this is a read command, the EMU will begin to drive SPWI on falling edge
SCLK = LO; //Complete the clock cycle

return(error); //Currently no error checking, any needed can be added
}

byte pwi1_read_frame(byte* data)
{
byte error = 0; //Return value
byte bit = 0; //Used as data counter to handle serial-to-parallel conversion

SPWI_DIR = IN; //Ensure that SPWI is an input

// Look for START Bit from EMU
if(SPWI == LO){
error = 1; //No START Bit from slave, error code = 1

}
pwi1_clock_pulse(); //Acknowledge the START Bit

A
N

-1
46

0

www.national.com 2

Software For PWI Emulation (Continued)

// Now ensure EMU drives 2 Reserved Bits, 00b
if(SPWI == HI){
error = 2; //Reserve Bit 1 not correct, error code = 2
}
pwi1_clock_pulse(); //Clock in first Reserved Bit
if(SPWI == HI){
error = 2; //Reserve Bit 2 not correct, error code = 2
}
pwi1_clock_pulse(); //Clock in second Reserved Bit

for(bit = 0; bit < 8; bit++){
(*data) = SPWI; //Grab the bit
pwi1_clock_pulse(); //Tell EMU we got it
(*data) <<= 1; //Make room for the next most significant bit
}

// Look for STOP Bit from EMU
if(SPWI == HI){
error = 3; //No STOP Bit from slave, error code = 3

}
pwi1_clock_pulse();

return(error); //Currently no error checking, any needed can be added
}

This is a supporting function that toggles the SCLK GPIO pin. This could also be done with a
macro, but is not here to aid clarity.⇒

void pwi1_clock_pulse(void)
{

// SCLK assumed low upon entering
SCLK = HI;
/*** INSERT SOME DELAY HERE TO EVEN OUT THE DUTY CYCLE AND ENSURE THAT YOU
MEET THE MINIMUM PULSE WIDTH REQUIREMENTS OF THE SPEC. ***/
SCLK = LO;

return();
}

We now proceed to the register write and register read commands. A very bare-bones
implementation could get by with nothing more than these two commands, but it is recommended
that all PWI functionality be implemented.

⇒
⇒
void pwi1_reg_write(byte register_number, byte write_data)
{
byte error = 0; //Error message; how to process?

/* Note that this function does not ensure whether the register requested is valid,
but it does lop off the high nibble since there are only 15 registers available. */

register_number &= 0x0F;

error = pwi1_write_frame(CMD_REG_WRITE | register_number); //Tell the EMU what we want
error = pwi1_write_frame(write_data); //Push the data to the register

return();
}

byte pwi1_reg_read(byte register_number)
{
byte error = 0; //Error message, how to process?
byte register_contents = 0; //The data that was read

/* Note that this function does not ensure whether the register requested is valid,

A
N

-1460

www.national.com3

Software For PWI Emulation (Continued)

but it does lop off the high nibble since there are only 15 registers available. */
register_number &= 0x0F;

error = pwi1_write_frame(CMD_REG_READ | register_number); //Tell the EMU what we want

// Here we must handle the turn-around clock pulse
pwi1_clock_pulse();

// Now read what the SPC is driving back
error = pwi1_read_frame(& register;_contents);

// Send back what we got
return(register_contents);

}

Below are the command functions for PWI. We start with the two most
important, Core Voltage Adjust, and the Synchronize command. The synchronize command should
be implemented and called at start-up to ensure that the EMU is synchronized with the
master.

⇒
⇒
⇒
byte pwi1_core_v_adjust(byte voltage)
{

byte error = 0; //Error message

if(voltage & 0x80){
error = 1; //The MSB of R0 is reserved per PWI spec

}
else{
pwi1_write_frame(CORE_V_ADJ | voltage); //Command with MSB set indicates Core V Adjust

}

return(error);
}

void pwi1_synchronize(void)
{

/* The synchronize command is a series of 11 1’s followed by a STOP bit
byte bit = 0; //Used for the counter below

SPWI_DIR = OUT; //Make sure we are driving the SPWI pin

// START Bit
SPWI = HI;
CLK_PULSE;

// Send the two reserved bits, 11b, note that SPWI is already logic high
CLK_PULSE; //Reserved 1
CLK_PULSE; //Reserved 2

// Now we will do the payload bits, note that SPWI is already logic high
for(bit = 0; bit < 8; bit++){
CLK_PULSE; //Clock each bit out
}

// Stop Bit is a logic low
SPWI = LO;

CLK_PULSE;

return(void);
}

A
N

-1
46

0

www.national.com 4

Software For PWI Emulation (Continued)

void pwi1_reset(void) {

pwi1_write_frame(CMD_RESET); //CMD_RESET = 0x10

return(void);
}

void pwi1_sleep(void) {

pwi1_write_frame(CMD_SLEEP); //CMD_SLEEP = 0x11

return(void);
}

void pwi1_shutdown(void) {

pwi1_write_frame(CMD_SHUTDOWN); //CMD_SHUTDOWN = 0x12

return(void);
}

void pwi1_wakeup(void) {

pwi1_write_frame(CMD_WAKEUP); //CMD_WAKEUP = 0x13

return(void);
}

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.

2. A critical component is any component of a life support device
or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com
Tel: 1-800-272-9959

National Semiconductor
Europe Customer Support Center

Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Support Center
Email: ap.support@nsc.com

National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: jpn.feedback@nsc.com
Tel: 81-3-5639-7560

www.national.com

E
m

ulating
the

P
ow

erW
ise

Interface
U

sing
G

P
IO

s
and

S
oftw

are
A

N
-1460

	
	Introduction
	PWI Discussion
	PWI Emulation
	Software For PWI Emulation

