A Users Guide to COPSTM Oscillator Operation

The following discussion is an overview of the COPS oscillator circuits meant to give the reader a working knowledge of the circuits. Although the descriptions are very general and light on detail; a background in complex frequency analysis is necessary. For additional information the references cited should be consulted as well as the many works on oscillator theory.
There are 2 basic circuits from which all of the COPS oscillator options are provided. (See option lists in individual data sheets.) The first and simplest in description is the astable one shot of Figure 1 which gives us our RC oscillator option. A1 and A2 are inverters with A1 possessing a Schmitt trigger input. T 1 is a large N channel enhancement MOS FET. Operation with the external R-C shown is as follows. Assuming C is initially discharged the CKI pin is low forcing T1 off. As C charges through R the trigger point of $A 1$ is eventually reached at which time T 1 is turned on discharging C and beginning a new cycle. Although almost any combination of R-C could be chosen, we would ideally like to have as short a discharge time as possible thereby eliminating the high variability in T1 drain current from device to device as a timing factor. For this reason R is chosen very large and C very small. This choice also leads to minimum R-C power dissipation. For the CKI Schmitt trigger clock input option the T1 MOS FET is merely mask disabled from the oscillator circuit.

TL/DD/5139-1
FIGURE 1. R-C Oscillator

The second oscillator circuit is the classic phase shift oscillator depicted in Figure 2. Found not only on COPS but on most other microprocessor circuits it is the simplest oscillator in terms of component complexity but the most difficult to analyze.

National Semiconductor Application Note 326 Jim Murashige April 1983

The conditions under which the circuit will oscillate are described by the Barkhausen Criterion which states that oscillation will occur at the frequency for which the total loop phase shift from x_{i} to x_{f} is 0° or a multiple of 360° (i. e., x_{f} is identical to x_{i}). In addition the total loop gain must be >1 to insure self propagation. The inverting amplifier shown between x_{i} and x_{0} provides 180° of phase shift thus leaving the feedback network to supply the other $\pm 180^{\circ}$. The feedback network can be comprised of active or passive components but highly effective oscillators are possible using only passive reactive components and the general configuration of Figure 3.
If you work out the feedback loop equations for Figure 3 it can be shown that in order to achieve $\pm 180^{\circ}$ phase shift:

$$
\begin{equation*}
X_{1}+x_{2}+X_{3}=0 \tag{1}
\end{equation*}
$$

X 1 and X 2 must both be inductors or capacitors
therefore X 3 is inductive if X 1 is capacitive and vice versa
if X 1 and X 2 are capacitors it is a Colpitts Oscillator
X 1 and X 2 are inductors it is a Hartley Oscillator

TL/DD/5139-3
FIGURE 3. Typical Feedback Configuration

The Colpitts configuration is commonly shown in microprocessor oscillator circuits (Figure 5) with the inductive X3 replaced by a crystal for reasons we shall soon see. The equivalent electrical model of a crystal is shown in Figure $4 b$ and a plot of its Reactance versus Frequency shown in Figure $4 c$. R-L-C represent the electro-mechanical properties of the crystal and C_{0} the electrode capacitance. There are 2 important points on the reactance curve labeled f_{a} and f_{b}.
At $f_{a}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}$
the crystal is at series resonance with L and C canceling each other out leaving only a nonreactive R for 0 phase shift. This mode of operation is important in oscillator circuits where a non-inverting amplifier is used and 0° phase shift must be preserved.
$A t f_{b}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}+\frac{1}{L C_{C}}}$
which is just a little higher than f_{a} the crystal is at parallel resonance and appears very inductive or capacitive. Note that the cyrstal will only appear inductive between f_{a} and f_{b} and that it becomes highly inductive very quickly. In addition f_{b} is only a fraction of a percent higher than f_{a}. Therefore the only time that the crystal will satisfy the $\mathrm{X} 3=-(\mathrm{X} 1+$ X2) condition in the Colpitts configuration of Figure 5 is when the circuit is oscillating between f_{a} and f_{b}. The exact frequency will be the one which gives an inductive reactance large enough to cancel out:
$\mathrm{X} 1+\mathrm{X} 2=\frac{1}{\omega \mathrm{C} 1}+\frac{1}{\omega \mathrm{C} 2}=\frac{1}{\omega}\left[\frac{1}{\mathrm{C} 1}+\frac{1}{\mathrm{C} 2}\right]=\frac{1}{2 \pi \mathrm{f}}\left[\frac{1}{\mathrm{C}_{\mathrm{L}}}\right]$
Therefore by varying C1 or C2 we can trim slightly the oscillator frequency.

TL/DD/5139-5
b. Electrical Equivalent

TL/DD/5139-6
c. Reactance Versus Frequency

FIGURE 4. Quartz Crystal

TL/DD/5139-7
FIGURE 5. Colpitts Oscillator

The Q of a circuit is often bounced around in comparing different circuits and can be viewed graphically here as the slope of the reactance curve between f_{a} and f_{b}. Obviously the steeper the curve the smaller the variation in f necessary to restore the Barkhausen Phase Shift Criterion. In addition a lower Q (more R) means that the reactance curve won't peak as high at f_{b}, necessitating a smaller X1 + X2. When selecting crystals the user should be aware that the frequency stamped on the cans are for either parallel or series resonance, which, although very close, may matter significantly in the particular application.
An actual MOS circuit implementation of Figure 5 is shown in Figure 6. It consists of a MOS inverter with depletion load and the crystal π network just presented. External to the COPS chips are the R_{f} and R_{g} resistors. R_{f} provides bias to the MOS inverter gate $\mathrm{V}_{\mathrm{g}}=\mathrm{V}_{\mathrm{o}}$. Since the gate draws no current R_{f} can be very large ($M \Omega$) and should be, since we do not wish it to interact with the crystal network. R_{g} increases the output resistance of the inverter and keeps the crystal from being over driven.

TL/DD/5139-8
FIGURE 6. MOS Oscillator

Of course the feedback network doesn't have to have the configuration of Figure 3 and can be anything so long as the Barkhausen Phase Shift Criterion is satisfied. One popular configuration is shown in Figure 7 where the phase shift will be 180°
at $\mathrm{f}=\frac{1}{(2 \pi R C \sqrt{6})}$

TL/DD/5139-9
FIGURE 7. R-C Phase Shift Oscillator

AN-326 A Users Guide to COPS Oscillator Operation

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

